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A B S T R A C T

This paper presents an empirical analysis of the effects of temperature on Direct Current Fast Charger (DCFC)
charging rate and discusses the impact of such effects on wider adoptions of electric vehicles (EVs). The authors
conducted statistical analysis on the effects of temperature and constructed an electric vehicle charging model
that can show the dynamics of DCFC charging process under different temperatures. The results indicate that
DCFC charging rate can deteriorate considerably in cold temperatures. These findings may be used as a reference
to identify and assess the regions that may suffer from slow charging. The problems associated with temperature
effects on DCFC charging deserve greater attention as electrification of motor vehicles progresses and DCFC
usage increases in the future.

1. Introduction

Although the affordability of electric vehicles (EVs) has dramati-
cally improved in the past few years, that affordability is nowhere near
that of their gasoline counterparts. EVs at competitive prices with ga-
soline counterparts are available in the current market; however, they
are typically equipped with small battery packs that can only support a
very limited driving range per charge. Because high-capacity lithium-
ion batteries come with a high price tag, fast public charging has often
been considered as an alternative solution to extending the limited
driving range of EVs (Schroeder and Traber, 2012; Morrissey et al.,
2016; Bernardo et al., 2016; Burnham et al., 2017; Levinson and West,
2017; Neaimeh et al., 2017; Bryden et al., 2018; Yang, 2018). However,
fast charging a lithium-ion battery is a complicated process with many
shortcomings. One of the most notable limits of charging lithium-ion
batteries is the variable charging rate that is susceptible to different
environmental conditions—which occurs as the onboard battery man-
agement system limits the charging rate to avoid detrimental effects on
the battery cells (Motoaki and Shirk, 2017). Cold temperature in par-
ticular can considerably degrade the charging rate and extend the
duration of charging, which potentially pose challenges in EV operation
in cold regions. Therefore, in a large country like the United States
where regional climate can vary from coast to coast, fast charger de-
ployment for EVs requires careful consideration regarding the effects of
regional temperature on fast battery charging.

However, the literature on EV infrastructure planning and policy in
the light of the temperature effects on EV fast charging are limited. Past

studies typically assumed the EV charging process with a constant rate
of charge (Zhang et al., 2012; Dong et al., 2014; Zenginis et al., 2016;
Wang et al., 2017) and the effects of temperature on EV charging were
neither accounted for or discussed. However, because cold tempera-
tures have substantial effects on the performance of lithium-ion bat-
teries (Dubarry et al., 2013; INL; Ji et al., 2013; Jaguemont et al., 2016;
Lindgren and Lund, 2016), the findings from previous studies on EV
infrastructure may alter once the temperature effects are taken into
account. However, data acquisition as well as methodologies to esti-
mate the impacts of temperature on EV fast charging are challenging.
Ideally, statistical modeling should be applied to data that are collected
from repeated experiments in a controlled laboratory environment;
however, data collection of such kind is costly in time and budget.

Alternatively, in this paper we propose that fast charging data col-
lected from on-road vehicles can supplement such needs. More speci-
fically, we use on-road data collected from Nissan Leafs that were op-
erated as taxi cabs in New York City for a case study to statistically
analyze the magnitude of effects of temperature on EV fast charging.
Based on the resulting model, the potential impact of such an effect on
wider adoptions of electric vehicles is subsequently discussed. The no-
velties of this paper are three folds: (1) the application of statistical
methods to field data for modeling the electric vehicle charging process;
(2) the creation of a charging process model (based on the 2012 Nissan
Leaf) that captures the effects of temperature; and (3) the illustration of
the effects of temperature on charging efficiency across various regions
in the United States. The resultant methodology to construct a charging
process model is well suited to be used in the context of the analysis and
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optimization of electric vehicle infrastructure. To the best knowledge of
the authors, no study has examined the effects of temperature on EV
fast charging based on empirical data.

2. Literature review

It is uncertain how commonly the complexity and shortcomings of
the fast charging process are known outside the battery research field.
EV manufacturers typically only provide rough approximations of
charging duration to the public, without specifying the range of con-
ditions in which that said performance is accurate. For example, the
2012 Nissan Leaf owner's manual states that Direct Current Fast
Chargers (DCFCs) are capable of recharging a 2012 Leaf battery from a
10% state of charge (SOC) to an 80% SOC in about 30min (Nissan,
2012), but it does not state how much time is required to charge from
80% to 100% or how much delay is expected under what conditions.
However, the fact is that the rate of charge is variable as it is controlled
by the vehicle's onboard battery management system to avoid over-
charging and damage to the battery, which can be triggered by a variety
of internal and external factors. Among others, cold temperatures have
been shown to have particularly high detrimental effects on lithium-ion
batteries. A review of the findings on the effects of cold temperatures on
lithium-ion battery technology can be found in Jaguemont et al. (2016).

Many EV research areas require a numerical representation of the
DCFC charging process. For example, charging station deployment
often needs to consider the rate of EV charging because a longer
duration of charge means a need for more charging stations for a given
demand. However, the problematic effects of temperature on the fast
charging and their effects on the level of services of the fast charging
have rarely been considered. In fact, the rate of charge is typically as-
sumed constant (Zhang et al., 2012; Dong et al., 2014; Zenginis et al.,
2016; Wang et al., 2017). Although this practice provides computa-
tional convenience in modeling EV charging, it also introduces positive
biases in the performance of EV charging because it does not account
for the variable charging rate. Some previous research attempted to
incorporate the variable charging rate in modeling. For example, Arias
and Bae (2016) adopted a piecewise linear simplification of the char-
ging rate which was originated from Zhang et al. (2012)—it takes
30min to charge from 0% to 80% capacity and an additional 15min
from 80% to 100%. Arias et al. (2017) also adopted a two-piece char-
ging profile linearization with an assumed duration of 36min required
for full charge. Olivella-Rosell et al. (2015) modeled the charging
process as a nonlinear function of SOC and energy required, although
the type of charging station considered was 230-volt alternating current
charging instead of DCFC. Lindgren and Lund (2016), on the other
hand, applied a battery model to simulate charging and discharging of
EV batteries in a simulation study of an EV fleet. Although their use of a
bottom-up-constructed battery model provides more theoretically so-
phisticated characterization of EV fast charging, this approach has
several shortcomings. Firstly, their battery model was based on a single
cell and not a battery pack; thus, to emulate the behavior of the battery
pack, the model input and output were multiplied by an assumed
number of cells in the pack. This scaling practice would also pro-
portionally scale up the degree of bias and error that the single-cell
model contains. The study also placed its focus on level 2 charging
(3.6 kW) instead of DCFC, whose process is more difficult to char-
acterize. The charging processes in the above-mentioned studies were
based on laboratory observations, and the effects of temperature on fast
charging were not examined. Few empirical studies of the temperature
effects on EVs can be found in EV literature. Yuksel and Michalek
(2015) examined the effects of regional climate variation on EVs in
terms of energy consumption, driving and charging patterns, and grid
emissions. Specifically, the authors quantified the temperature effects
on driving range, energy consumption per mile, and carbon dioxide
emissions per mile based on on-road data. Although the authors ac-
knowledged that temperature also affects the charging duration, it was

not examined.
To the best of the authors’ knowledge, the effects of temperature on

EV fast charging rate have never been estimated using on-road data.
One obvious reason for the lack of empirical modeling of the effects of
temperature on fast charging is the unavailability of the particular type
of field data that are needed for the analysis. In order to conduct an
empirical study on the effects of temperature on EV fast charging, the
field data needs to contain detailed records of variables such as timing,
duration, state of charge, temperature, and amount of charge. However,
not only are on-road vehicle data rarely collected, but EV charging also
has very much to do with environmental conditions and human beha-
vior that are extremely difficult to record or control, which makes many
types of analysis simply infeasible. The literature on the use of on-road
vehicle data is quite limited. For example, Sun et al. (2015) and Zoepf
et al. (2013) both used on-road vehicle data to estimate discrete choice
models for the timing of EV charging. Motoaki and Shirk (2017) ex-
amined the on-road data collected as part of the EV Project—a large
scale project funded by the United States Department of Energy—to
investigate the effect of a fixed fee on fast charger utilization. In their
study, it was found that DCFCs can be used inefficiently by a driver if
the vehicle in question is kept plugged in even after the rate of charge
deteriorates considerably. In the data used in the study, each charging
event was recorded in terms of time the vehicle was parked at a DCFC
charge station (i.e., park duration was not necessarily all spent char-
ging), and the actual duration of time spent solely for the purpose of
charging was not known. Therefore, long park duration observed at
those stations with nearby amenities could be attributed to the possi-
bility that the driver left his/her car plugged in at the station and went
shopping or dining without having to make the trade-off between the
time spent at the charging station and the amount of charge. This made
it impossible for the authors to tell if the driver intentionally kept the
vehicle plugged in at a DCFC even after the rate of charge deteriorated
for further charging or he/she simply did not care to come back to the
vehicle in time. Moreover, because each charging event record consists
of park duration and the amount of charge, the variable nature of the
charging rate could not be examined. Temperature at the time of
charging was not recorded in the EV Project data; thus, the effect of
temperature on DCFC charging was also not examined. The findings
from Motoaki and Shirk (2017) show that in an effort to measure the
empirical performance of DCFC, some level of experimental control
must be placed on both the availability of the charger (i.e., a charger
must be available for use when needed) and the behavior of the driver
(i.e., timing of charging must be close to optimal) to reduce their effects
on the patterns of charging.

3. Data

In an effort to mitigate the problems associated with typical on-road
vehicle data discussed above, this present study utilizes on-road data
collected from a number of 2012 Nissan Leafs used as taxis as a part of
the New York City Taxi and Limousine Commission's Electric Vehicle
Pilot Program. During the pilot program several Leafs were provided by
Nissan to taxi fleets and owner drivers for use in normal taxi service.
Two 50-kW DCFCs were available for use by the Leaf taxis in
Manhattan, New York. During the test period, which ran from June
2013 through February 2015, controller area network data were col-
lected by on-board data loggers during vehicle operation and charging.
Collected controller area network signals include battery current, bat-
tery voltage, SOC, vehicle speed, ambient temperature, charge dura-
tion, and vehicle global positioning system location. When the vehicle
was plugged in to a charger, it was recorded as a single event for which
the battery SOC was recorded both at the time the charging was in-
itiated and the time it was ended—the intermediate process of charging
was not included in the data.

Our reasons for the choice of this particular dataset for our study are
twofold. First, in taxi operation, the problems of inefficient use of DCFC,
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described in Motoaki and Shirk (2017), are mitigated because for each
in-shift charging, the driver needs to make the tradeoff between the
time spent at the charger and its opportunity cost (i.e., revenue he or
she can potentially earn for that time). Therefore, it was in the driver's
best interest to minimize the time spent at a charging station and return
to his or her shift as quickly as possible. Because of this, it can be
reasonably assumed that the duration of the charge was used solely for
the purpose of the charging. Moreover, because the trip to a charging
station is a wasteful trip that does not generate revenue, the driver
would also attempt to minimize the number of trips to a charger by
charging the vehicle to around 80% for each charging event. These
hypothesized charging patterns were confirmed by the data shown in
Fig. 1, which shows histograms of the SOC at the beginning of charge
and the SOC after charge—about 50% of the time, drivers began
charging their vehicles when the SOC was below 20% and the battery
was charged to about 80% and above more than 90% of the time. Based
on this evidence, the utilization of DCFC observed during the pilot
program can be said to be near optimally efficient.

The effect of temperature on the charging rate was also confirmed
from the data. Fig. 2 shows the plot of the SOC increase and the end
SOC against the duration of charging. The color of each observation
reflects the ambient temperature at the time of the charging. The figure
shows a clear relationship between temperature and charging duration:
when temperature is above 25 °C, the relation between SOC increase
and the duration seems strongly linear with a steep slope; whereas
when temperature is below 25 °C, the relation seems weakly linear with
a much flatter slope. Fig. 1 also shows that in cold weather, many of the
charging events ended up taking much longer than the expected
duration of 30min. The strong vertical variation in the figure can be
attributed to the variation in the initial SOC (SOC at the beginning of
charging) as the charging rate becomes low when charging was started
at a high SOC. The data contain only the charge events up to the
maximum duration of 60min because the charging stations installed in
this study had a safety feature of automatically shutting off the charging
after 60min of a continuous use, in which case the driver had a choice
of driving off and resuming his shift or start the second round of
charging by resetting the charger, which would be recorded as a se-
parate charging event. Although the reasons are unknown, the data
indicated that in some instances the vehicle was unplugged during
charging and plugged back immediately after. Because a series of such
events were recorded as two or more separate charging events—even
though they were likely really one event—the charging events that took

place within a 5-min window at the same charger were deemed as er-
rors and removed from our analysis. Similarly, the charging events with
duration of less than 3min were deemed as errors and removed from
the analysis.

It is important to acknowledge that only the average charging rate
can be computed for each charging event from the data—by dividing
the SOC increase by the duration of the charging—because the data on
the charging are limited to the initial SOC and the ending SOC without
records of intermediate levels of the SOC. Fig. 3 shows two scatter plots
of the average rate of charge each plotted against the temperature and
the initial SOC. Both plots show approximately linear relationships.

Ambient temperature data for the United States, which will be used
to illustrate regional variation in EV fast charging rate, were obtained
from the Typical Meteorological Year database from the National
Renewable Energy Laboratory. The data consist of hourly temperatures
of a typical meteorological year based on records for the year 1976
through 2005 in 925 locations of the lower 48 states.

4. Methodology

As discussed earlier, because the average rate of charge in the re-
corded charging events has an approximately linear relationship with
the temperature and the initial SOC, an ordinary least square regression
with the following specification was estimated:

= + + +Average rate of charge β β Temperature β Initial SOC ε.0 1 2

Model 1

With this specification, the Model 1 estimates the average rate of
charge as a linear function of temperature and the initial SOC and fails
to account for the continuous deterioration of the rate of charge over
the duration of charge. The actual fast charging process is a non-linear
process (Motoaki and Shirk, 2017) and a simple multiplication of the
average rate of charge by duration can overestimate the amount of
charge, especially for a charging event of long duration. Therefore, the
current model by itself cannot accurately estimate the continuum of the
variable charging rates or the resulting SOC. To fill this gap, the pre-
dicted values of SOC from our regression were computed in the fol-
lowing piecewise linear approximation for each discretized minute.

4.1. Piecewise linear approximation

The set of notations used in the derivation are listed in Table 1.

Fig. 1. Histograms of SOC before and after charge.
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The specification of Model 1 can be written as:

− = − + − + − +S S β t t β T t t β S t t ε( ) ( ) ( ) .e o e o e o o e o0 1 2

Here T is assumed to be constant for a single charging event, be-
cause the ambient temperature is unlikely to vary significantly within
the charging duration. This also matches the condition in which the
experimental data were collected. Let β β βˆ , ˆ , ˆ

1 2 3 denote the coefficient
estimates and Ŝe denote the predicted value of SOC after charging.
Then, for some given values of T S t t, , ,o o e, we have:

− = − + − + −S S β t t β T t t β S t tˆ ˆ ( ) ˆ ( ) ˆ ( ).e o e o e o o e o0 1 2

Now consider an arbitrary charging event over the duration of t(0, ),

and discretize this time range into n intervals of equal length
= − = … −+h t t i n, 0,1, , 1i i1 . Let S t( ) denote SOC as a function of time.

Then, the function S t( ) can be approximated by a piecewise linear

Fig. 2. Relationships of SOC, charge duration, and temperature.

Fig. 3. Scatter plots of SOC increase per minute versus temperature and initial SOC respectively.

Table 1
Notations and units used.

S – state of charge in fraction
T – temperature (Celsius)
t – time (minute)
S0 – initial SOC in fraction
Se – ending SOC in fraction
t0 – starting point in time of charging
te – ending point in time of charging
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function S tˆ ( ) over each interval as:

− = − + − + − < ≤

= = … −
+S t S β t t β T t t β S t t t t t

S S t i n

ˆ ( ) ˆ ˆ ( ) ˆ ( ) ˆ ˆ ( ), for ,
ˆ ˆ ( ), 0, 1, , 1.

i i i i i i i

i i

0 1 2 1

Model 2

Model 2 can be used to approximately predict SOC as a function of
time with different initial SOC values and under different temperatures.
It is important to note that from Model 2, a smooth (i.e., continuously
differentiable) function can be derived by taking the limit as →h 0.

Re-arranging Model 2 and plugging in
= = − = = −+t t t t h S S t S t h, , ˆ ˆ ( ) ˆ ( )i i i i1 gives:

− − = + + −S t S t h
h

β β T β S t h
ˆ ( ) ˆ ( ) ˆ ˆ ˆ ˆ ( ).0 1 2

Because =
→

− −lim
h

S t S t h
h

dS t
dt0

ˆ ( ) ˆ ( ) ˆ ( ) and − =
→

S t h S tlim ˆ ( ) ˆ ( )
h 0

, if S tˆ ( ) is

continuously differentiable, taking the limit of both sides as →h 0
gives:

= + +dS t
dt

β S t β β T
ˆ ( ) ˆ ˆ ( ) ˆ ˆ .2 0 1

Solving the equation for S tˆ ( ) with the initial value =S Sˆ (0) o gives:

= ⎛

⎝
⎜ +

+ ⎞

⎠
⎟ −

+
S t S

β β T
β

e
β β T

β
ˆ ( )

ˆ ˆ
ˆ

ˆ ˆ
ˆ .β t

0
0 1

2

ˆ 0 1

2

2

Model 3

Model 3 is a smooth approximation function that also predicts SOC
over time with different initial SOC values and under different tem-
peratures. It is important to note the applicable of the ambient tem-

perature T and initial SOC S0. On one hand, = −
→+∞

+S tlim ˆ ( )
t

β β T
β

ˆ ˆ
ˆ

0 1

2
im-

plies the theoretical bounds <− <+S 1β β T
β0

ˆ ˆ
ˆ

0 1

2
; on the other hand, what's

more relevant to using Model 3 for predicting charging profiles are the
practical bounds that are subject to the support of the data, which will
be discussed in Section 6.

5. Result

The regression model had an excellent fit to the data with both R2

and the adjusted R2 at 85%. Table 2 shows the coefficient estimates and
their 95% confidence intervals. All coefficients were statistically sig-
nificant at the 1% level. The residuals versus the fitted plot and Q-Q
plot of Model 1 showed very weak evidence for misspecification and
some violation of residual normality at the tails. For a visual illustration
purpose, the predicted values were computed using Model 3 and plotted
to show SOC over a 60-min charge duration for 25 °C and 0 °C (Fig. 4).
The ambient temperature was assumed to be constant during the charge
event. Our model predicts that with 95% confidence, the expected
amount of the decrease in the end SOC after a 30-min charge between
when the temperature is 25 °C and when it is 0 °C is between 22% and
36% (Table 1).

6. Discussion

This analysis showed that the average deterioration of a 30-min
DCFC charge from warm temperature (25 °C) to cold temperature (0 °C)

can be as large as a 36% decrease in the end SOC. This indicates that the
performance of DCFC can largely vary across the United States due to
the variation in regional climate. To illustrate this problem, the SOC
values rendered for the locations included in the Typical Meteorological
Year database were calculated using Model 3. The coefficients β β βˆ , ˆ , ˆ

0 1 2
are given in Table 2, =S 20%0 and Tl is the median of the daily max-
imum hourly temperatures over a year at location l (i.e.,Tl is the median
of = = …= …T T T d{ max { }, 1, ,365}ld ld h ldh

max max
1, , 24 ). These values of Tl are

chosen to illustrate possible limitations on the prevailing 50-kW DCFC
due to impeded charging in cold weather. Charging efficiency is ex-
pected to be better than the rendered values in Fig. 5 on half of the days
in a year and worse on the other half. The median-temperature day SOC
after a 30-min charge, with an initial SOC of 20%, ranges from 49% to
74% over all different regions of the lower 48 states. In general, char-
ging efficiency decreases as one goes further north and increases as one
goes further south. As shown in Fig. 5, noticeable pockets of areas with
the poorest EV charging efficiencies are found in the Pacific Northwest,
the Midwest, north of the Great Lakes region, and the upper Northeast,
while the highest EV charging efficiencies are found near the southern
state boundaries of California, Arizona, Texas, and Florida.

The degradation of the rate of DCFC charge due to cold tempera-
tures can potentially pose many challenges. For example, delays in fast
charging may cause difficulties in maintaining EV operations that need
to follow specific schedules. A slower DCFC charging rate can also be a
deterrent for consumers living in cold regions to purchase EVs, in ad-
dition to other temperature-related issues such as performance loss and
degradation of the batteries (Jaguemont et al., 2016) and driving-range
loss from cabin climate control load (Yuksel and Michalek, 2015, Zhang
et al., 2018).

Future EVs likely have larger battery capacities and require less
frequent fast public charging; however, public fast charging will still
likely be required for a long-range drive and heavy-duty vehicles, which
consume a large amount of energy per mile. Future charging stations
will likely be able to charge EVs faster and may mitigate temperature
effects; however, the level of potential improvement is unknown—at
least in the short run. The present analysis also suggests that the im-
pacts of DCFC charging on the electric grid may considerably vary over
seasons in the future once the electricity demand from DCFCs con-
stitutes a significant portion of the total electricity demand. Because the
rate of charge can potentially be much higher in warm conditions,
DCFC usage may require higher levels of electricity supply in warmer
weather, thus impacting the grid more severely. In some regions of the
United States, temperatures can fluctuate drastically from day to day or
even hour to hour. An extreme level of short-term fluctuation in tem-
perature may make it difficult for an electricity supplier to plan for a
sustainable energy supply, especially when the area hosts a large
number of DCFCs. Past studies in modeling load demand due to EV
battery charging did not account for seasonal variation in load demand
due to variable DCFC charging rate (Qian et al., 2011; Zhang et al.,
2012; Liu, 2012; Arias and Bae, 2016). To the authors’ knowledge, the
efficiency loss in EV system performance due to prolonged charging
duration in cold temperature or its effects on the electric grid has not
been examined. Further research will be needed to address these issues
and new policy should consider a variable load demand from EV

Table 2
Coefficients estimate of Model 1.

Estimate Standard error t stats P value CI 2.5% CI 97.5%

Intercept (β0) 0.015 0.00023 69.00 < 0.01 0.015 0.016
Temperature (β1) 0.00034 0.0000084 40.54 < 0.01 0.00032 0.00036
Initial SOC (β2) − 0.022 0.00072 − 30.33 < 0.01 − 0.023 − 0.020

R-squared: 0.85.
Adjusted R-squared: 0.85.
Degrees of Freedom: 420.
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charging caused by temperature changes.
It is important to highlight that the present study has limitations

needing to be addressed. First, the charging data were collected from
one particular model of EV (i.e., the 2012 Nissan Leaf); as such this is
just a case study with the Nissan Leaf. Other models of EVs have dif-
ferent battery management systems, energy consumption, and battery
capacities; thus, the magnitude of temperature effects on their charging
rate, as well as the expected charging duration, likely differs from that
reported here. Second, because the on-road data were collected over a
period of two years, it is reasonable to expect the vehicles’ battery ca-
pacity was degraded by several percentage points, especially toward the
end of the data collection period. Because the unit of measure used for
charging was based on SOC, battery degradation was not accounted for
in this analysis. In addition, some measurement errors in SOC are likely
present in the on-road data due to the limited accuracy of the battery
management system to estimate SOC. In fact, when charging duration

was less than five minutes, some of the recorded SOC and kWh charged
were inconsistent with each other. We treated those observations as
errors and removed them from the data.

The support of our data also has limitations. Our data consist of fast
charging with duration of between 1 and 60min. As shown in Fig. 1,
many charging events under severe cold temperatures took 60min.
Charging events with duration of more than 60min were not recorded
in the data because the DCFC installed in the Electric Vehicle Pilot
Program shut off after 60min of use. We did not consider SOC after the
charge beyond 60min because we believed that charging that takes
more than 60min with Nissan Leaf battery is not practically fast
charging. The support for the temperature data during charging is also
limited to the range of temperatures recorded in Manhattan between
2013 and 2015, where the lowest temperature recorded was − 9.42 °C
and the highest was 39.34 °C. Therefore, the approximation function,
Model 3, should not be used to estimate changing profile for events

Fig. 4. Plot of predicted SOC profile over time using the smooth approximation function.

Fig. 5. Predicted SOC after 30-min charge on median temperature day (S0 = 20%).
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under conditions that are beyond these the support of the data, which
should be limited to durations between 1 and 60min and temperatures
between − 9.34 and 39.34 °C. Finally, due to the availability of data,
ambient temperature was used as a proxy for battery temperature
which is what actually affects the charging rate.

7. Conclusion

The Nissan Leaf taxi data showed that the operation of the EV taxies
suffered from considerable deterioration in the charging efficiency in
cold temperatures. By applying a piecewise linear approximation with a
regression, this study statistically estimated the effects of temperature
on the average fast charging rate and constructed a charging model that
can show the dynamics of the DCFC charging process under different
temperatures. These results identified both the particular type of data
needed to examine the performance of DCFC charging and an accom-
panying methodology to analyze such data. Using the charging model,
we showed that the DCFC charging in some of the regions in the United
States suffer from considerable deterioration in the charging efficiency
in cold seasons. Our analysis may be used as a reference to identify and
assess the regions that may suffer from severe charging inefficiency.

The problems associated with temperature effects on DCFC charging
deserve great attention as electrification of motor vehicles progresses
and DCFC usage increases in the future. Because the temperature effects
were neglected in the past research on EV infrastructure planning, these
results may alter the previous findings. In particular, these findings pose
additional uncertainty in the practicality of EV (with the current battery
technology) in some of the regions in the United States in the light of
their climatic characteristics. Future research in the fast charger loca-
tion planning as well as EV operations that involve fast chargers, must
consider climate variability.
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