
Extreme Maintenance:
Transforming Delphi into C#

John Brant
brant@refactoryworkers.com

Don Roberts
University of Evansville
roberts@evansville.edu

Bill Plendl
ProfitStars R�

A Jack Henry Company
bplendl@profitstars.com

Jeff Prince
ProfitStars R�

A Jack Henry Company
wjprince@profitstars.com

Abstract—Sometimes projects need to switch implementation

languages. Rather than stopping software development and

rewriting the project from scratch, transformation rules can map

from the original language to the new language. These rules can

be developed in parallel to standard software development, al-

lowing the project to be cut over without any loss of development

time, once the rules are complete. This paper presents a migration

project that used transformation rules to successfully convert 1.5

MLOC of Delphi to C# in 18 months while allowing existing

Delphi development to continue.

I. WHY CHANGE LANGUAGES

Software maintenance is generally about making incremen-
tal changes to a code base over a long period of time. However,
there are sometimes large, system-wide changes that need to
be made to modernize the code (e.g. changing frameworks).
The most extreme of these types of changes is completely
changing the implementation language.

It is generally recognized that rewriting a software system
from scratch is a bad idea [1]. However, there are still valid
reasons for switching languages. These include difficulty in
hiring qualified programmers, limited availability of third-
party libraries, lack of vendor support for the language tools,
limited or delayed support for new technologies, and enterprise
integration after an acquisition.

For all of these reasons, ProfitStars R�, a division of Jack
Henry & Associates, decided to migrate their core software
assets from Delphi to C#. They were increasingly finding
it difficult to hire and retain new programmers that were
experienced in Delphi programming. Third party libraries
that their products relied on were becoming unsupported
and libraries for new functionality were not available. But
the most compelling reason for their switch was ProfitStars’
desire to utilize the latest .NET technologies with their legacy
applications. Another contributing factor for the migration was
that they were acquired by Jack Henry & Associates, which
primarily used C# in their programs. Integrating the PROF-
ITstar Asset/Liability Management (ALM) software with the
software products of the larger organization was critical and
difficult to do under Delphi.

ProfitStars’ core ALM software assets are three major
software packages, several smaller software tools, and corre-
sponding automated test suites comprising approximately 1.5
MLOC of Delphi. By using the techniques and tools described

in this paper, we were able to translate their code base into
1.5 MLOC of C# in 18 months using only four developers,
ensure that all of their automated tests continued to pass, and
pass human QA testing, all with minimal impact on their
day-to-day software development process. During this time,
a major release occurred, new features were added and bugs
were fixed, all in the original Delphi code, which was reflected
in the translated C# code. On the cut over day, the translated
C# code was up-to-date with the latest Delphi code.

II. TRANSLATION PROCESSES

Several approaches have been tried to reimplement large
software projects.

A. Redesigning Rewrite
The most common approach is the rewrite. In this, software

development on the original system halts, or at least is sig-
nificantly reduced, while the team manually reimplements the
system in the new language. This reimplementation may be
a complete redesign or a manual conversion of the existing
source. There are several problems with this approach. First,
during the rewrite, few features or fixes are added to the
original code since the developers are busy implementing the
new system. Any fix that is added must be explicitly managed
to make sure it is included in the new system. In the best
case, during the rewrite, customers will see no changes. This
causes the company to lose ground to its competitors. The
second problem is that redeveloping the software is nearly as
error-prone as developing it the first time. New bugs will be
introduced. What exacerbates this is the tendency for groups to
redesign as they reimplement, attempting to simplify complex
code. Often, the original code was complex because it needed
to handle corner cases that have since been forgotten. These
cases often get lost in the reimplementation. As a result of
these problems, many rewrite attempts completely fail.

ProfitStars considered this approach, but rejected it for two
reasons. First, the estimate for the time required to rewrite the
project was measured in years rather than months. Second,
they did not think that it was feasible to keep two separate
code bases in sync for that period of time.

B. One-Shot Transformation Tool
Another approach is to use a tool that converts the pro-

gram’s syntax and some of the more common types to the

george
978-1-4244-8628-1/10/$26.00 ©2010 IEEE

george
26th IEEE International Conference on Software Maintenance in Timișoara, Romania

george

target language. Once this initial conversion is made, the
developers manually make the translated code run. Like the
rewrite approach above, all new development stops until the
program gets back into a working state. While this approach
is generally faster than the manual reimplementation, it has
a major problem in that there is no feedback to make the
initial conversion better. When there are problems with the
conversion, either the developers have to manually fix them
every place they occur, or they can rerun the conversion with
the update and lose all of the manual edits that have already
occurred. Often, these global problems are not uncovered early
enough so the approach is to manually fix all the occurrences.

C. Rule-Based Transformation
Our approach for migrating is to build a set of transforma-

tion rules that convert the code [2]. This approach is not new
[3] and is supported by several tools [4][5][6]. While similar
to the one-shot transformation tool approach, the important
distinction is that instead of editing the transformed code
directly, we edit the rules that transform the code. Any edits
made directly to the code will be lost when the code is retrans-
formed, whereas any changes made to the transformation rules
will be applied globally. Our tools [7] have been used along
with similar techniques to perform massive transformations
such as replacing an application data layer on a large project
[8]. While creating a rule may take longer than editing the code
directly, it has some advantages. The biggest advantage is that
development of the original code base can continue in parallel
with the construction of the transformation rule set. Because
the source is never directly edited, the rules can be replayed
at any time to translate the latest code. For the PROFITstar
ALM project, the code was translated on a daily basis so new
code written one day in Delphi was available the next day
in C#. Another big advantage with the rule-based approach is
that the rules are applied globally over the entire project. A
rule that fixes one piece of code will likely fix several other
locations that were previously unknown.

While a redesigning rewrite could potentially have the
greatest reward by having a better designed, more maintainable
system; it also has the largest risk. There is no guarantee that
the new code will be substantially better than the previous to
make up for the much greater implementation costs. Further-
more, since the rewrite will take longer than other approaches,
it also has the greatest risk of losing customers since their
bugs and new feature requests are not being addressed. The
transformation rule set approach is much better at managing
these risks. Not only is it much quicker to convert the existing
code instead of redeveloping the code, it has minimal impact
on the existing development process of fixing bugs and adding
new features.

One drawback of the transformation tool and rule set
approaches is that the generated code may not adhere to the
standards and practices of the target language. For example,
one major difference when converting from Delphi to C#
is naming conventions. In Delphi, class names are normally
prefixed with a “T” and instance variable names are prefixed

Inc(‘a‘, ‘b‘) �−→ ‘a‘ += ‘b‘

Fig. 1. Pattern to translate Delphi Inc expression into C#

with an “F”. Neither prefix is common in C#. Another major
difference for a Delphi to C# conversion is temporary variable
declarations. In Delphi the temporary variable is declared
separately from its first use. However, in C# it is common
for the variable declaration to appear on the same line as the
first assignment in a method. As a result, after the code has
been translated, it looks more like Delphi code than “standard”
C# code. Many of these standards and practices can be applied
after the migration is complete by using a refactoring tool like
ReSharper1 or by writing custom refactoring transformation
rules. Keeping these refactoring transformation rules separate
from the migration transformation rules helps simplify the
migration rules since we do not need to think about possible
interaction between the two sets of rules.

Another possible shortcoming of the rule approach is the
“compatibility layer” that you often have to build. If a library
in the old language is substantially different from the new
library, often it is easier to create a new component in the
new language that behaves like the old one. If we were doing
a strict rewrite, we would not need these “extra” components,
so there is a bit of cruft that appears in the design due to this
approach. However, this cruft can be removed by refactoring
after the migration is finished.

III. THE TOOL

We implemented all of the transformation rules for the
project using SmaCC and the SmaCC Transformation Toolkit.
SmaCC is a parser generator for Smalltalk. It can generate
abstract syntax trees (ASTs) along with a corresponding visitor
that will traverse the AST. ASTs generated using SmaCC have
pattern matching and rewriting support.

A. Rewrite Patterns

Pattern matches are special code fragments in an augmented
form of the original language that parse into pattern ASTs.
They can contain special pattern variables that can match
subtrees in that position. For most languages, a pattern variable
is anything delimited by the back-quote character (‘) since that
character isn’t commonly used.

Figure 1 shows a search and replace pattern for trans-
lating the Delphi Inc statement into a C# += statement.
It has two pattern variables: ‘a‘ and ‘b‘. These pat-
tern variables allow us to match both Inc(var, 3) with
‘a‘ = var and ‘b‘ = 3 and Inc(obj.var, 3 + 4)
with ‘a‘ = obj.var and ‘b‘ = 3 + 4. If the same
pattern variable is used multiple times, then it must match
the same expression in each position.

Unlike the search patterns which must parse into an AST,
the replacement patterns can be arbitrary text. This text directly
replaces the source of the matched AST node. Whenever

1http://www.jetbrains.com/resharper/

‘a/String‘[‘i‘] �−→ ‘a‘[(‘i‘)-1]

Fig. 2. Pattern to translate one-based indexing of strings into zero-based
indexing

a pattern variable occurs in the replacement expression, the
transformed source of whatever it matches is copied into the
replacement. While these replacement patterns look similar to
those used by other tools [4][7][5][6], they are quite different.
In the other tools the replacements transform ASTs to other
ASTs which are then pretty-printed. In SmaCC, the source
code associated with the AST is directly transformed via
string edits. By using text for the replacement, the replacement
expressions are not tied to any particular language. At the
beginning of the project we used this functionality to generate
reports of problem areas in their code by transforming patterns
of problem code directly into error messages.

For the project, we augmented the patterns provided by
SmaCC with type information. This allowed us to create
pattern expressions that would only match AST nodes of
a certain type. For example, Figure 2 shows a pattern for
translating the one-based string indexing that Delphi provides
to zero-based indexing in C#. The search pattern variable,
‘a‘, has been extended with the type String so it will
only match AST nodes that have the String type in Delphi.
This rule may insert unnecessary parentheses around the ‘i‘
pattern node. However, these were easily removed with C# to
C# pattern rewrites that were applied at the end of the project.
Furthermore, these types of C# pattern rewrites can remove
the “+ 1 - 1” that may occur from this rewrite when ‘i‘
contains “+ 1”.

B. The SmaCC Transformation Toolkit

The SmaCC Transformation Toolkit is our program that
allows us to build a set of transformations rules using the
parsers generated from SmaCC. Each transformation rule
has two parts: the search expression and the transformation
that is applied when the search expression matches. Search
expressions can either be SmaCC patterns or Smalltalk ex-
pressions. The Smalltalk expressions are arbitrary pieces of
code that return true when they match a node. Certain types
of matches are easier and faster if we can explicitly test the
AST node using a Smalltalk expression rather than a pattern.
For example, when converting Delphi to C# there are many
syntactical changes that are performed solely based on the
class of AST node (e.g., if-then-else node). While we could
write patterns for these, it is easier and faster to simply write
a Smalltalk expression that checks the class of the node.

Similar to the search expressions, replacement expressions
can either be SmaCC replacement patterns or Smalltalk ex-
pressions. The Smalltalk expressions allow arbitrary Smalltalk
code, but they generally fall into two different types of
expressions. The first type is simple edit expressions such
as inserting, deleting, or moving text. For example, if we
are transforming an assignment expression in Delphi to a C#
assignment expression, we need to replace the “:=” with

an “=”. We can do that with “self replace: match
assignment with: ’=’”. The other common type of
Smalltalk expression is setup code. This setup code can define
values that are used throughout the transformation process. For
example, we have an expression that loads a spreadsheet that
defines how to map Delphi types and methods into C# types
and methods. This spreadsheet can be shared and edited by
people not familiar with SmaCC’s patterns or Smalltalk.

Using Smalltalk expressions gave us several advantages
over building a separate transformation language. First, we
already knew the language. Second, we could use the existing
development tools. We didn’t need to write custom compilers,
debuggers, and inspectors. Third, it allowed the full environ-
ment to be used. This allowed us to use existing Smalltalk
code that dealt with files, images, etc. without need to define
them in a special transformation language.

With hundreds to thousands of transformation rules, it can
become difficult to figure out which rule is affecting a certain
piece of code. The SmaCC Transformation Toolkit has support
for showing which transformations affect a piece of code.
The user can select text from the input or output and see
which rules affected the selected text. Furthermore, selecting
the rule will underline the actual edits in the input and output
panes. Figure 3 shows the Delphi input and the C# output of a
simple pong game. In the output, an “if” statement has been
highlighted. Two rewrites affected this output. The first rewrite
is the “if” rewrite which added the parentheses around the
expression and deleted “then”, and the second rewrite is the
“binary expression” rewrite that converted the Delphi “or”
into a C# “||”.

In addition to transforming the Delphi code, we also wrote
transformation rules to transform the Delphi form files (.DFM
files) into C# designer files. The DFM files were not Delphi
code, but a list of properties for each GUI component in an
interface. This was effectively a different language that we
were transforming into C#.

To help with scaling a migration project, the SmaCC
Transformation Toolkit can distribute the work of transforming
the files across several machines and/or processes. Since the
goal was to build a set of rules that would convert the latest
code from Delphi to C#, these rules were run quite frequently.
During the project, we would get daily updates to the Delphi
source. While each daily update was typically fairly small,
its effects in C# could be much larger (e.g., adding a default
argument to a method in Delphi only changes a couple lines of
code, but may affect hundreds of call sites in C#). Therefore,
it was imperative that the SmaCC Transformation Toolkit be
able to retranslate a large software project quickly.

IV. PARTITIONING THE WORK

The migration project used four full-time developers: two
consultants that had experience with previous non-Delphi
migrations and two ProfitStars application developers. One
of the application developers was on permanent assignment
throughout the project, but the other position rotated among
the rest of the development team as their expertise was needed.

Fig. 3. SmaCC Transformation Toolkit

This also had the effect of exposing the entire development
team to the translated code so the final cut over would go
more smoothly.

The project was broken into 11 milestones that could be
independently tested and monitored for their progress. They
had a logical progression from simple external utility programs
to the main software assets. The first eight milestones were
either console-based utilities or simple GUIs. This allowed us
to create the core rules that dealt with the language itself and
some of the simpler libraries and GUIs without having to deal
with complex interfaces.

To keep some of the initial milestones from including too
much source, we had to break some dependencies. We may
have needed a particular method or class in some unit (file)
for the milestone, but we did not need all classes and methods
in the unit for the milestone. If we included all classes and
methods, then we would have needed to include several other
units in the milestone even though they were never used by
the actual code executed by the milestone. To fix these issues
we either refactored the Delphi to break the dependencies
or replaced some methods in translation. For example, if
a method wasn’t used for a milestone we could replace it
in translation with a C# method that threw an exception.
Replacing the method in C# would break the dependency on

code that had not been translated. As the project progressed,
these replacement methods were removed so that their Delphi
source could be translated to C#.

One of the biggest, project-specific, jobs that needs to be
performed is determining the mapping between library classes
and methods from the old system to the new system. For
example, a Delphi TToolBar from the ComCtrls unit maps
to a C# System.Windows.Forms.ToolStrip. At the
start of the project we generated a spreadsheet that contained
all of the external types and methods used by the program.
This spreadsheet was used throughout the project to map these
types and methods to their equivalent C# types and methods.
Since the data was stored in a spreadsheet, everyone in the
project could use it to enter mappings as it required almost
no training. At the beginning of the project, the ProfitStars
application developers were more qualified to enter these
mappings since they were experts in Delphi and had some
experience in C#, whereas the migration consultants had very
little Delphi experience.

One common problem that arises in migrations is that there
is not a direct one-to-one mapping between a library in the old
language and a new library. These cases are typically handled
either by extension/helper methods or custom components.
Extension methods are generally used when a single method

call in the old system maps to multiple calls in the new
system. While we could use transformation rules to map the
one method call into multiple method calls, it is generally
better to not duplicate these calls throughout the code base.
When the differences between the old and new libraries are
more complex, we typically write a custom component to
behave as the classes did in the old system. This is commonly
done with GUI components. Even though there are often
what appear to be one-to-one replacements in the new GUI
framework, each GUI framework has its own idiosyncrasies
and the correct behavior of the application often relies on them.
The replacement components range from simple subclasses
that override a single method, to complete replacements where
the entire functionality is custom-coded. For the PROFITstar
ALM project, the extension methods and custom components
added around 2,400 lines of code.

Sometimes creating special transformation rules for a par-
ticular method required more work than the benefit that
you would get from the rules. If the C# method differed
significantly from the Delphi, it was easier to specify a drop-
in replacement C# method instead of the transformation rules.
For example, transforming a Delphi method with inline as-
sembler to C# would likely need several transformation rules,
and those rules would not be very reusable. In these cases
we used method replacements. Method replacements insert the
supplied C# method in place of the original Delphi method.
When the replacement is made, the Delphi code is checked for
changes that have occurred since the C# replacement method
was created. If any Delphi changes were made, a comment is
added to the C# method so that we can review the changes
made to the Delphi code and make corresponding changes to
the C# code. This protected us from cases where the replaced
method had been changed in the original code. Since the
replacement was not pattern-based, without this notification,
the replacement method would simply ignore any changes that
had been made to the original code base since the replacement
was written. Obviously, we strove to minimize the number of
replacement methods that we used.

While most of the conversion simply used transformation
rules on the existing code, sometimes the Delphi code was
refactored beforehand to make the transformation easier. While
we could have performed many of these refactorings using
transformation rules, performing them in Delphi allowed us to
verify the Delphi code before the C# code was runnable. The
most common Delphi refactoring was changing constructors.
In C# constructors no code can occur before the super con-
structor call. However, in Delphi, the super constructor call
can occur at any time in the constructor method. Code that
occurred before the super constructor needed to be moved so
that it occurred as an argument of the super constructor call or
after the super constructor call. Sometimes this required cre-
ating new constructors or methods and nearly always required
assistance from the Delphi development team.

Another common Delphi refactoring was converting records
into classes. While C# has support for records, pointers to
records are only supported in unsafe code. Sometimes the

records pointers were only used for optimization, passing a
pointer on the stack instead of the whole record. However,
many times they were used to pass a mutable reference to
the record. In these cases, we converted the records into
classes. Whenever a record pointer was assigned or passed
on the stack, an object reference could be used instead. If
the record was assigned or passed without using the pointer,
then we needed to clone the object to keep the original record
semantics. To assist with this refactoring, we wrote some
special Delphi-to-Delphi transformation rules.

V. EXPERIENCE

In this section, we point out the features of this project
which contributed to its success and pitfalls that made the
project more difficult than initially anticipated.

A. The Good Parts

1) Original Developers Available: Despite portions of the
code base being nearly 20 years old, many of the original
developers of the software were available to us. This was
critical in many cases where we were translating a particularly
convoluted piece of code. Often the developers knew the
reasons for the complex code. Sometimes it was simply
working around a bug in a library and as such could be
eliminated in C#. However, other times it was handling a case
that we had not considered. Having such resources available
eliminated considerable time that would have been required to
research the code.

2) Developers were familiar with C#: For many migration
projects the developers must be trained in the target lan-
guage. However, for this project the developers had already
implemented some smaller projects in C#. This minimized
the amount of retraining that the development group had to
go through before they switched to the translated project.

3) Able to Change Original System: The team wasn’t afraid
of making Delphi changes to make the translation process
easier. For example, Delphi has two ways of dealing with
objects; pointers and interfaces. Most of the project’s code had
been using the more modern, interface, approach. However,
there were still several of the old objects lingering around.
The development team refactored those occurrences into the
new form so the translation would be simpler.

However, this worked against us on occasion. Sometimes
when a problem was identified, we handled it during the
translation process. Communications got crossed, and the team
made changes to fix the original code. This duplication of
effort wasted time.

4) On-Site Customer: We had an on-site customer to give
the final word on which features were necessary. Some fea-
tures, mostly in the UI, were difficult to duplicate in C#. The
on-site customer could tell us what aspects were required and
what ones could be modified to better fit the libraries that we
were using.

5) Similar Language Features: Both Delphi and C# are
statically-typed, object-oriented languages. This eased the
translation between the two because most of the language
features from Delphi were present in C#. Where language
features were not present in C#, (e.g. arrays with non-zero
base indexes), we could create library classes to mimic their
behavior.

6) Frequent Regeneration: The SmaCC transformation en-
gine is fairly efficient and can be easily parallelized. Since
we were creating transformation rules and not directly editing
the generated code, we would make several rule changes each
day. After each change, we would regenerate the problem file.
Normally, it was only a matter of a few seconds to regenerate
a file.

We also regenerated the complete code base on a daily
basis. This allowed us to regression test the day’s rule changes.
We would verify the C# code changes to ensure that the rule
changes were valid. Daily regeneration also allowed QA to test
features in C# that were added to the original Delphi on the
previous day. In fact, we occasionally had bug reports opened
up when we failed to regenerate the source overnight and did
not pick up a particular enhancement that had just been added
to the original code. At the point of cut over, the two code
bases had been in sync for months.

7) Global Changes: The rules allowed us to make global
changes up to the end of project. In one example, we were
using a GUI control that did not provide all of the necessary
features. We did not find out about the required features
until late in the project. Having rules allowed us to adjust
the mappings to another control and regenerate the code. If
we weren’t using rules, it would have taken much longer to
manually edit the code.

8) Original Language Expert: Every language has its own
idiosyncrasies and corner cases that only the gurus know. In
a code base as large at the one for this project, it is inevitable
that some of these will crop up. For example, Delphi could
pass a single integer as an argument to a function that expected
an array of integers, and it would work as if we had passed a
one element array. At least one of ProfitStars’ developers was
a Delphi guru and could explain how these things actually
worked under Delphi.

9) Extensive Automated Tests: Anytime a change of this
magnitude occurs, it is common for some new bugs to be
introduced. Tests are useful for limiting the quantity of new
bugs. Even though applying the transformation rules is an
automated process, the fact is, humans are writing the rules
and errors do occur. By having automated tests, we could
validate some of the translation without having to involve the
QA department or domain experts. The Profitstars code had
over 13,000 automated DUnit2 tests. Each project milestone
had a collection of tests that were also migrated to use the
NUnit3 framework and had to pass for the milestone to be
completed. Upon completion of the project all tests had to

2http://dunit.sourceforge.net/
3http://www.nunit.com/

pass under C#.
10) Milestones: Breaking the project into smaller mile-

stones had some advantages. First, having milestones helped
track the overall progress of the project. While we could have
used some other metric for measuring the overall progress such
as “percent of code migrated”, many times these measurements
aren’t that reliable. For example, a developer may consider
the code migrated when it compiles or when it passes the unit
tests, but QA may only consider it migrated when it passes
all of their tests in addition to the unit tests. The explicit
milestones let everyone from the developers to management
know what the current status was.

The milestones also helped the developers remain focused
on immediate problems for the current milestone instead of
other less pressing issues. For example, part of the final
milestone was C# code cleanup to eliminate some compiler
warnings. Some of these warnings were present in the original
Delphi code and others were created from the migration
process. Since they did not affect the running of the code,
they did not need to be removed until the end of the project.
By having the C# code cleanup as part of the final milestone,
we were able to focus solely on making the code work in the
earlier milestones.

B. The Hard Parts
1) GUIs: User interfaces are generally the hardest part of

any migration project. Often it is quite difficult to replicate
the same look and feel between the two systems. Sometimes
these differences are acceptable, but other times the original
behavior must be duplicated even if it isn’t consistent with
other uses in the application or consistent with the operating
system. Furthermore, most projects have few, if any, GUI tests
that are automated or even written down.

GUI events are another big issue with migration projects.
There are differences between the types of events and when
these events are triggered. One of the most common differ-
ences is whether an event can be signaled when a property is
set programmatically or only when the end user interacts with
the control. For example, the Delphi list box signals its selec-
tion changed event only when the end user selects something
using the mouse or keyboard. However, in C# the selection
changed event is also signaled when the code explicitly sets the
SelectedItem property. In some cases these extra events
don’t cause any problems. However, in others they can cause
infinite recursion or more subtle differences.

2) External Library Design Differences: Large projects
depend on several libraries. These libraries may be provided
by the language itself or by third-party vendors. In either
case, a replacement must be found in the target language. In
most cases once the target is found, it is a simple matter of
mapping the original library to the target library. However,
in some cases it is much more complex. If the original and
the target have different architectural styles, it may require
making several changes to the migrated code. One of the larger
differences for this project was the reporting library. In Delphi,
the reporting library was event-driven, that is, each band in the

report generated an event when it was about to be rendered on
the page. The original program used these events to fill in the
report controls with appropriate data for that band in addition
to manipulating the control geometries and visibilities. The
library we used in C# took a standard dataset and used that
to generate the entire report. In Delphi, the program code was
in complete control. It decided what to print and where to
print it. However, in C#, the library was in control of these
things. The code simply provided the report format and the
report dataset. This difference required extensive scaffolding
to support the old model on top of the new model and was a
source of many of the last defects in the project.

3) External Library Bugs: Both the platform you are mi-
grating from and the one that you are migrating to have
bugs. The difference is that the developers know the bugs
that are in the original platform and have worked around
them. They don’t know the ones in the target platform, yet.
Working around these new bugs is often a time-consuming
process. Furthermore, some of the work arounds for the
original platform may not work for the target platform or may
no longer be necessary and may need to be removed.

4) “Accidentally” working code: Several times on this
project, we ran across code that worked under the old system,
but broke under the new. Quite often, the Delphi code was
arguably incorrect, it just happened to work due to some fluke
in the Delphi runtime. When this was translated into C#, the
code no longer worked because of the different runtime. These
cases were often fixed by simply having the developers correct
the original code. In an environment where developers resist
this type of change, the translation would be more difficult.

5) QA Testing: Even though the project had several thou-
sand automated tests, it still needed integration and system
testing. The QA department provided this support. They were
required to sign off on each milestone for it to be considered
complete. In addition to obvious bugs, they were responsible
for reporting any differences between the Delphi and C#
programs. These differences would then be looked at by the
on-site customer to determine if the difference was acceptable.
Given the size of the project, this was a very time consuming
process. It takes considerable time to test 1.5 MLOC. Fur-
thermore, it takes even longer when you are looking for any
differences between the two programs.

6) Refactoring During Migration: Just as it is generally a
good idea to separate refactoring from adding features, it is
also a good idea to separate refactoring from migration. While
both refactoring and migration try to keep the behavior the
same, they are different actions. For this project, the original
Delphi code used a few different grid controls. We wanted
to use a single grid control in C#. Instead of refactoring
the Delphi code to use a single control before migrating,
we decided to refactor while migrating. As a result, we
didn’t know what the required behavior of the grids was. For
example, is the grid line color a required part of the behavior,
or can it be ignored for the purposes of the refactoring? Instead
of addressing these issues in a smaller refactoring step, we
addressed them during the migration. Not only did this make

the transformation rules more complex, it also made it more
difficult to test since we had not yet determined what the
required behaviors were.

7) Memory Management: Memory management in Delphi
is a mix of explicit management and reference counting.
Whenever the reference count reaches zero, the object’s de-
structor is called. In C#, everything is garbage collected. When
the object is garbage collected, the object’s finalizer is run
if it exists. There is no order guarantee on these finalizers.
For example, a finalizer may need to write some data to a
file and then close the file. However, since the file may have
been garbage collected too, its finalizer may have already been
run and closed the file. Therefore, when the finalizer tries to
write data to the file, it will fail. Furthermore, there is no
timeliness guarantee for finalization so a resource may not
be released in a timely manner. For most objects, these issues
were not important. However, for a critical set of objects, these
behaviors mattered and introduced a nondeterministic set of
errors into the translated code.

To deal with this, we added logging code to the finalizers.
If an object finalizer was called without first calling the
Dispose method, it would be logged. This logging was
integrated into the unit tests. If any finalizers were logged
during the test, the test failed.

Using this log information, we were able to isolate possible
memory release issues and examine them on a case-by-case
basis. In most cases, there would never be an error. But
in others, we needed to refactor the original code to avoid
sequencing issues during finalization.

8) Floating Point Numbers: Delphi has single, double,
and extended precision (80-bit) floating point numbers. C#
only has single and double precision floats. Code that used
extended precision numbers was converted to use doubles.
This caused some differences in the calculations. This was
especially troublesome in cases where no delta was taken
into account when comparing two floating point numbers for
equality. Where it caused the most difficulty for us was in
getting reports to match exactly. For every difference, we had
to bring in the domain expert from the development team
to determine if the difference was insignificant, or was the
result of an actual error. This was exacerbated by the fact that
some of the regression test data contained unrealistically large
numbers.

9) Managing expectations: When we were in the initial
phase of this project, we had told management that the
translated application would work “just like the original.”
After some of the early milestones, the client remarked that
they were impressed with how closely the translated version
resembled the original. However, we became victims of our
early success. Towards the end, we were getting defects
opened up against the translation because certain screens were
redrawing more visibly than they were before the translation.
The screens were virtually identical to the originals, they just
painted more slowly, in some cases, than they had in the
original system. During the process, expectations had risen
to a level that was difficult to achieve. Fixing many of these

types of things lie outside the scope of direct translations.
Different systems have different performance characteristics.
Some operations will be faster. Others will be slower. The
appropriate time for dealing with many of these issues is after
the completed translation by working directly on the translated
code.

10) Visual Studio: Since this was a C# project, we used
Microsoft’s Visual Studio development environment. However,
this presented some problems. First, unlike the Eclipse Java
IDE, Visual Studio does not allow running a project that has
compile errors. In Eclipse, methods that have compile errors
simply throw exceptions if they are executed. This behavior
makes migration projects much nicer as you can start testing
the migration earlier than we could using Visual Studio. With
Visual Studio, most of the transformation rules had to be
written before we could test any of them.

Another issue with Visual Studio was compile times. Com-
piling the entire project would take about 3 minutes. This
added considerable time to debugging as making a small
change could require another 3 minute compile. While edit-
and-continue helped eliminate some of these compiles, it has
several restrictions on when it works. For example, you cannot
use edit-and-continue if the method contains an anonymous
method.

One last problem was getting the .cs designer files in a
format that Visual Studio’s GUI designer could edit without
introducing new bugs. While the designer files are simply
C# code, they have some restrictions on some of the code
constructs and methods that can be used. If you used one of
these items, the designer might open without any problems, but
upon saving the interface, certain properties would be quietly
lost.

VI. SUMMARY

Switching implementation languages for a legacy project is
a difficult, time consuming, and costly task. By performing the
translation using a rule-based, transformational approach, the
translation can be performed in parallel with actual develop-
ment. This minimizes the impact on the development process
and provides a viable path for a project to modernize their
code base.

REFERENCES

[1] J. Spolsky, Joel on Software: And on Diverse and Occasionally Related
Matters That Will Prove of Interest to Software Developers, Designers,
and Managers, and to Those Who, Whether by Good Fortune or Ill Luck,
Work with Them in Some Capacity. Apress, 2004.

[2] D. Roberts and J. Brant, “Tools for making impossible changes,” IEE
Proceedings – Software, vol. 151, no. 2, April 2004.

[3] G. Arango, I. Baxter, P. Freeman, and C. Pidgeon, “TMM: Software
maintenance by transformation,” IEEE Software, vol. 3, no. 3, pp. 27–39,
1986.

[4] I. D. Baxter, C. Pidgeon, and M. Mehlich, “DMS R�: Program transforma-
tions for practical scalable software evolution,” in ICSE ’04: Proceedings
of the 26th International Conference on Software Engineering. Wash-
ington, DC, USA: IEEE Computer Society, 2004, pp. 625–634.

[5] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser, “Stratego/XT
0.17. A language and toolset for program transformation,” Sci. Comput.
Program., vol. 72, no. 1-2, pp. 52–70, 2008.

[6] J. R. Cordy, “The TXL source transformation language,” Sci. Comput.
Program., vol. 61, no. 3, pp. 190–210, 2006.

[7] D. Roberts, J. Brant, and R. Johnson, “A refactoring tool for Smalltalk,”
Theory and Practice of Object Systems, vol. 3, no. 4, pp. 253–263, 1997.

[8] W. Loew-Blosser, “Transformation of an application data layer,” in
OOPSLA ’02: OOPSLA 2002 Practitioners Reports. New York, NY,
USA: ACM, 2002.

