ZIKE: Ono se dá těžko nějak rozumně argumentovat proti tomu článku na wikipedii, protože je to jenom stručný popis, na to by to chtělo mít celou knihu. Zajímalo by mě, jestli v knize nějak probírají argumenty z "opačného spektra", třeba aspoň Husserlova Logická zkoumání.
Co se týče těch metafor kolem nekonečna, myslím, že je jenom jedna idea nekonečna. Rozdíl mezi potenciálním a aktuálním nekonečnem je rozdíl ve formálním používání pojmu nekonečna. V Peanově aritmetice je formalizován koncept potenciálního nekonečna, ale ze sémantického hlediska, význam toho formálního konceptu se realizuje nějakým (aktuálně) nekonečným univerzem (aritmetika má jenom nekonečné modely).
V teorii nekonečných množin existuje formalizace pojmu aktuální nekonečno, tj. objekt, který formálně nějak splňuje naše intuice kolem aktuálního nekonečna, ale pak se v takové teorii automaticky vynořuje pojem "supernekonečna", nekonečna většího než všechna formalizovaná nekonečna. Ordinální čísla jako transfinitní pokračování přirozených čísel jsou formální objekty teorie nekonečných množin, která je formalizací tohohle potenciálního supernekonečna. Třída všech ordinálních čísel je sama aktuální supernekonečno, ale tahle třída už neexistuje jako prvek uvnitř teorie množin, vidíme ji jenom zvenčí.
Myslím, že idea nekonečna by mohla sloužit i jako argument proti materialismu v tom smyslu, že by se ukázalo, že myslící konečný stroj (pokud bychom na chvíli připustili, že to spojení dává smysl) nemůže nijak myslet ani potenciální nekonečno.
"Example of metaphorical ambiguity" jsem neporozuměl. V teorii množin samozřejmě nejsou čísla ani uspořádané dvojice, ale jejich modely. Není nic zvláštního, že se dva různé pojmy můžou modelovat stejnými množinami.
Dál jsem už zatím radši nečetl.