The Shapes of Galaxiessu201723 | www.cfa.harvard.edu/
https://www.cfa.harvard.edu/news/su201723
Since Edwin Hubble proposed his galaxy classification scheme in 1926, numerous studies have investigated the physical mechanisms responsible
for the shapes of spiral and elliptical galaxies. Because the processes are complex, however, studies frequently rely on computer simulations
as their main tool. The discs of galaxies are believed to form through the collapse of gas which acquires its initial spin in the early Universe.
During their subsequent evolution, galaxies undergo a wide range of phenomena, from the accretion of matter -- or its outflow -- to mergers with
other galaxies, all of which modify the disk’s spin and angular momentum.
Astronomers think that spiral galaxies with the largest galactic discs formed preferentially in protogalaxies with the highest angular momentum,
although early attempts to verify this prediction using computer simulations failed. (More recently, simulations have been able to verify this
trend.) Elliptical galaxies, on the other hand, are believed to be the remnants of repeated galaxy mergers, but their shapes depend on many details
like the galaxies' masses, gas content, and the collision parameters. As a result, these mergers need to be considered over a cumulative,
cosmological context with large numbers of examples to evaluate their development from a statistical perspective.
CfA astronomers Vicente Rodriguez-Gomez, Annalisa Pillepich and Lars Hernquist led a team that analyzed the morphologies of about eighteen thousand
galaxies in the Illustris computer simulation. Both disc and spheroidal galaxies arise naturally in this simulation. They find that massive merging
galaxies develop into spirals or spheroidal shapes depending on their gas content (as expected, since the star formation activity depends crucially
on the gas). Unexpectedly, they find that for lower mass galaxies -- roughly the mass of the Milky Way or smaller -- mergers do not seem to play
a significant role in determining the morphology. The reason appears to be that in higher mass mergers a galaxy accretes many more stars from
the partner, and this plays the a critical role. Their significant conclusion is that only in massive galaxies are mergers the dominant factor
in shaping the system.