• úvod
  • témata
  • události
  • tržiště
  • diskuze
  • nástěnka
  • přihlásit
    registrace
    ztracené heslo?
    VIRGOCosmos In Brief - Aktualní novinky vesmírného výzkumu v kostce
    VIRGO
    VIRGO --- ---
    https://www.nasa.gov/feature/goddard/2017/spanning-disciplines-in-the-search-for-life-beyond-earth

    The search for life beyond Earth is riding a surge of creativity and innovation. Following a gold rush of exoplanet discovery over
    the past two decades, it is time to tackle the next step: determining which of the known exoplanets are proper candidates for life.

    Scientists from NASA and two universities presented new results dedicated to this task in fields spanning astrophysics, Earth science,
    heliophysics and planetary science — demonstrating how a cross-disciplinary approach is essential to finding life on other worlds — at
    the fall meeting of the American Geophysical Union on Dec. 13, 2017, in New Orleans, Louisiana.

    “The potentially habitable real estate in the universe has greatly expanded,” said Giada Arney, an astrobiologist at NASA’s Goddard Space
    Flight Center in Greenbelt, Maryland. “We now know of thousands of exoplanets, but what we know about them is limited because we can’t
    yet see them directly.”

    Currently, scientists mostly rely on indirect methods to identify and study exoplanets; such methods can tell them whether a planet is
    Earth-like or how close it is to its parent star. But this isn’t yet enough to say whether a planet is truly habitable, or suitable for
    life — for this, scientists must ultimately be able to observe exoplanets directly.

    Direct-imaging instrument and mission designs are underway, but in the meantime, Arney explained, scientists are making progress with tools
    already at their disposal. They are building computational models to simulate what habitable planets might look like and how they would
    interact with their parent stars. To validate their models, they are looking to planets within our own solar system, as analogs for
    the exoplanets we may one day discover. This, of course, includes Earth itself — the planet we know best, and the only one we know
    of yet that is habitable.
    VIRGO
    VIRGO --- ---
    Zrovna teď...

    http://seti.berkeley.edu:8000/oumuamua-observations/

    As indicated in our press release, we are excited to be focusing our observational efforts on ‘Oumuamua,
    the mysterious interloper recently spotted moving rapidly through the solar system.

    Our ‘Oumuamua observation campaign will begin on Wednesday, December 13 at 3:00 pm ET. Using the Robert C. Byrd
    Green Bank Telescope, we will observe ‘Oumuamua across four radio bands, from 1 to 12 GHz. Our first phase of
    observations will last a total of 10 hours, divided into four “epochs” based on the object’s period of rotation.
    VIRGO
    VIRGO --- ---
    News | Bright Areas on Ceres Suggest Geologic Activity
    https://www.jpl.nasa.gov/news/news.php?feature=7022

    If you could fly aboard NASA's Dawn spacecraft, the surface of dwarf planet Ceres would generally look quite dark, but with notable exceptions.
    These exceptions are the hundreds of bright areas that stand out in images Dawn has returned. Now, scientists have a better sense of how these
    reflective areas formed and changed over time -- processes indicative of an active, evolving world.

    "The mysterious bright spots on Ceres, which have captivated both the Dawn science team and the public, reveal evidence of Ceres' past subsurface ocean,
    and indicate that, far from being a dead world, Ceres is surprisingly active. Geological processes created these bright areas and may still be changing
    the face of Ceres today," said Carol Raymond, deputy principal investigator of the Dawn mission, based at NASA's Jet Propulsion Laboratory in Pasadena,
    California. Raymond and colleagues presented the latest results about the bright areas at the American Geophysical Union meeting in New Orleans on Tue.

    The Bright Stuff: New NASA Dawn Findings at Ceres
    https://www.youtube.com/watch?v=wL-sfEsYhpw
    VIRGO
    VIRGO --- ---
    Rozkvétající hvězdná porodnice | ESO Česko
    http://www.eso.org/public/czechrepublic/news/eso1740/?lang

    Kamera OmegaCAM osazená na dalekohledu ESO/VST zachytila zářící hvězdnou porodnici Sharpless 29. Na záběru je zdokumentována celá řada astrofyzikálních
    procesů včetně oblaků plynu a prachu, které odrážejí, absorbují a opět emitují světlo mladých horkých hvězd ukrytých v nitru mlhoviny.

    Část oblohy zachycená na tomto snímku je zanesena v katalogu Sharpless (Sharpless catalogue of H II regions), který obsahuje takzvané H II oblasti:
    oblaky mezihvězdného ionizovaného plynu, kde se rodí nové hvězdy. Oblast s označením SH 2-29, Sharpless 29 se nachází asi 5 500 světelných let daleko
    a na obloze se promítá do souhvězdí Střelce (Sagittarius), hned vedle známé mlhoviny Laguna (Lagoon Nebula). Nalezneme zde celou řadu astronomických
    zajímavostí včetně mlhoviny NGC 6559 (uprostřed snímku), ve které probíhají intenzivní procesy formování nových hvězd.

    ESOcast 142 Light: Stellar Nursery Blooms into View (4K UHD)
    https://www.youtube.com/watch?v=5w0cKbIREe4
    VIRGO
    VIRGO --- ---
    https://www.icrar.org/galaxygiant/

    Astronomers have used two Australian radio telescopes and several optical telescopes to study complex mechanisms
    that are fuelling jets of material blasting away from a black hole 55 million times more massive than the Sun.

    In research published today, the international team of scientists used the telescopes to observe a nearby radio
    galaxy known as Centaurus A.

    The giant radio galaxy Centaurus A
    https://vimeo.com/243582320


    “As the closest radio galaxy to Earth, Centaurus A is the perfect ‘cosmic laboratory’ to study the physical processes
    responsible for moving material and energy away from the galaxy’s core,” said Dr Ben McKinley from the International
    Centre for Radio Astronomy Research (ICRAR) and Curtin University in Perth, Western Australia.

    Centaurus A is 12 million light-years away from Earth—just down the road in astronomical terms—and is a popular target
    for amateur and professional astronomers in the Southern Hemisphere due to its size, elegant dust lanes, and prominent
    plumes of material.

    VIRGO
    VIRGO --- ---
    Petr Kulhánek - Velké astronomické objevy za Velkou louží... (FČ FEL ČVUT 23.11.2017)
    https://www.youtube.com/watch?v=knZp8gCTw40
    VIRGO
    VIRGO --- ---
    2017 Nobel Prize Award Ceremony
    https://www.youtube.com/watch?v=cNWwGQAKidA
    VIRGO
    VIRGO --- ---
    Astronomers to Check Mysterious Interstellar Object for Signs of Technology - The Atlantic
    https://www.theatlantic.com/...ce/archive/2017/12/yuri-milner-oumuamua-interstellar-asteroid/547985/

    Russian billionaire Yuri Milner says if the space rock 'Oumuamua is giving off radio signals, his team
    will be able to detect them—and they may get the results within days.

    VIRGO
    VIRGO --- ---
    Earliest Black Hole Gives Rare Glimpse of Ancient Universe | Quanta Magazine
    https://www.quantamagazine.org/earliest-black-hole-gives-rare-glimpse-of-ancient-universe-20171206

    It weighs as much as 780 million suns and helped to cast off the cosmic Dark Ages. But now that astronomers
    have found the earliest known black hole, they wonder: How could this giant have grown so big, so fast?

    VIRGO
    VIRGO --- ---
    ESO to Build ELT With Full Primary Mirror | ESO Česko
    http://www.eso.org/public/czechrepublic/announcements/ann17085/

    ESO’s governing body, the Council, has just authorised additional spending to cover the cost of both the five inner rings of segments
    for the main mirror (M1) of the Extremely Large Telescope (ELT), and one spare set of 133 mirror segments (one sixth of the total M1),
    and also an additional mirror segment maintenance unit. The decision was made at the recent meeting of the Council in Garching, Germany,
    after the positive recommendation by the ESO Finance Committee and made possible by an improved funding scenario.

    VIRGO
    VIRGO --- ---
    Silicon Valley Astronomy Lecture Series: Jill Tarter, Oct. 11, 2017

    In 2004, Craig Venter & Daniel Cohen suggested that if the 20th century was the century of physics, the 21st century will be the century
    of biology on our planet. Jill Tarter believes that their idea will be extended beyond the surface of our world and that we may soon have
    the first opportunity to study biology that developed on other worlds. She talks about her vision of the future of understanding life on
    Earth and beyond our planet. And she discusses projects that are underway and are planned to learn more about the possibility of intelligent
    life among the stars. This talk also celebrates the publication of the book "Making Contact" (by Sarah Scoles) about Jill Tarter's life and work.

    Will the 21st Century be the Time we Discover Life Beyond Earth
    https://www.youtube.com/watch?v=wYcM0BOYHyw
    VIRGO
    VIRGO --- ---
    Heads Up, Earthlings! The Geminids Are Here | NASA
    https://www.nasa.gov/...shall/news/news/releases/2017/heads-up-earthlings-the-geminids-are-here.html

    2017 Geminids Will Be Dazzling!
    https://www.youtube.com/watch?v=LapXJCJFeXQ


    Fantastic Year for Geminid Meteor Shower - Sky & Telescope
    http://www.skyandtelescope.com/observing/geminid-shower-2017/

    Mark the date: December 13th. That's the night the Geminid meteor shower peaks. Highlighted by
    the return of its parent asteroid 3200 Phaethon, this year's show promises to be one of the best ever.

    VIRGO
    VIRGO --- ---
    The Initial Mass Functionsu201747 | www.cfa.harvard.edu/
    https://www.cfa.harvard.edu/news/su201747

    The gas and dust in giant molecular clouds gradually come together under the influence of gravity to form stars. Precisely how this occurs,
    however, is incompletely understood. The mass of a star, for example, is by far the most important factor constraining its future evolution,
    but astronomers do not clearly understand what determines the exact mass of a newly forming star. One aspect of this problem is simply knowing
    how many stars of each size there are, that is, knowing the distribution of stellar masses in a large cluster of stars. The initial mass function
    (IMF) describes this distribution, and is currently based on an average from observations of stars in our Milky Way.

    CfA astronomer Charlie Conroy and four colleagues are conducting a study of the IMF with the Keck telescope and its spectrometer. They do find
    some variations in the IMF and, contrary to some expectations, they conclude that metallicity is not the sole driver of these variations. Instead,
    they conclude that the velocities of the material in the star clusters seems to be a key factor. The result, which now will be followed up with
    more measurements, is important because it suggests a different theoretical framework is needed to explain the origin of the IMF.

    VIRGO
    VIRGO --- ---
    How strong are black holes really? — Shorthand Social
    https://social.shorthand.com/UFNews/uyeqsNATm8u/how-strong-are-black-holes-really

    UF scientists discover black holes' magnetism surprisingly wimpy

    Black holes are famous for their muscle: an intense gravitational pull known to gobble up entire stars and launch streams
    of matter into space at almost the speed of light.

    It turns out the reality may not live up to the hype.

    In a new paper appearing in the journal Science, University of Florida scientists have discovered these tears in the fabric
    of the universe have significantly weaker magnetic fields than previously thought.

    A 40-mile-wide black hole 8,000 light years from Earth named V404 Cygni yielded the first precise measurements of the magnetic
    field that surrounds the deepest wells of gravity in the universe. Study authors found the magnetic energy around the black hole
    is about 400 times lower than previous crude estimates.

    The measurements bring scientists closer to understanding how black holes' magnetism works, deepening our knowledge of how matter
    behaves under the most extreme conditions — knowledge that could broaden the limits of nuclear fusion power and GPS systems.

    The measurements also will help scientists solve the half-century-old mystery of how "jets" of particles traveling at nearly
    the speed of light shoot out of black holes’ magnetic fields, while everything else is sucked into their abysses, said study
    co-author Stephen Eikenberry, a professor of astronomy in UF’s College of Liberal Arts and Sciences.
    VIRGO
    VIRGO --- ---
    Galaxy Orbits in the Local Supercluster
    http://www.ifa.hawaii.edu/info/press-releases/galaxy_orbits/

    A team of astronomers from Maryland, Hawaii, Israel, and France has produced the most detailed map ever of the orbits of galaxies in
    our extended local neighborhood, showing the past motions of almost 1400 galaxies within 100 million light years of the Milky Way.

    The team reconstructed the galaxies' motions from 13 billion years in the past to the present day. The main gravitational attractor
    in the mapped area is the Virgo Cluster, with 600 trillion times the mass of the Sun, 50 million light years from us. Over a thousand
    galaxies have already fallen into the Virgo Cluster, while in the future all galaxies that are currently within 40 million light years
    of the cluster will be captured. Our Milky Way galaxy lies just outside this capture zone. However the Milky Way and Andromeda galaxies,
    each with 2 trillion times the mass of the Sun, are destined to collide and merge in 5 billion years.

    PANAAK
    PANAAK --- ---
    2017 Nobel Lectures in Physics
    https://www.youtube.com/watch?v=scVyxVnMYUc
    VIRGO
    VIRGO --- ---
    The PI’s Perspective: Wrapping up 2017 En Route to Our Next Flyby – Pluto New Horizons
    https://blogs.nasa.gov/...017/12/06/the-pis-perspective-wrapping-up-2017-en-route-to-our-next-flyby/

    New Horizons is in good health and cruising closer each day to its next encounter: a flyby of the Kuiper Belt object (KBO) 2014 MU69 (or “MU69” for short).
    If you follow our mission, you likely know that flyby will occur on New Year’s Eve and New Year’s Day 2019, which is just barely over a year from now!

    As I write this, New Horizons is wrapping up an active period that began when the spacecraft emerged from hibernation mode in September. But soon, on Dec. 21,
    we’ll put the spacecraft back in hibernation, where it will remain until June 4, 2018. After June 4 the spacecraft will stay “awake” until late in 2020, long
    after the MU69 flyby, when all of the data from that flyby have reached Earth.

    But before we put New Horizons into hibernation this month, we have some important work ahead. We’ll observe five more KBOs with the onboard LORRI telescope/
    imager to learn about their surface properties, satellite systems and rotation periods. This work is part of a larger set of observations of 25-35 Kuiper Belt
    objects from 2016 to 2020 on this extended mission. Learning about these KBOs from close range and at angles that we cannot observe from Earth makes will give
    us key context for the more detailed studies we’ll make of MU69 from a thousand times closer than we can study any other KBO. In addition to that LORRI imaging
    of these objects, we’re continuing our nearly round-the-clock observations of the charged particle and dust environment of the Kuiper Belt—both before and while
    New Horizons hibernates.

    Also right ahead is a 2.5-minute engine burn planned for Dec. 9 (yes, a Saturday). This maneuver will both refine our course and optimize our flyby arrival time
    at MU69, by setting closest approach to 5:33 Universal Time (12:33 a.m. Eastern Standard Time) on Jan. 1, 2019. Flying by at that time provides better visibility
    by the antennas of NASA’s Deep Space Network, which will attempt to reflect radar waves off the surface of MU69 for New Horizons to receive. If it succeeds, that
    difficult experiment will help us determine the surface reflectivity and roughness of MU69 at radar wavelengths—something that has been successfully applied to
    study asteroids, comets, planetary satellites and even some planets, including Pluto, which New Horizons observed the same way in 2015.

    VIRGO
    VIRGO --- ---
    Heavy Metal: How First Supernovae Altered Early Star Formation
    http://www.nersc.gov/...news/2017/heavy-metal-how-the-first-supernovae-altered-early-star-formation/

    New Research Bridges Scaling Gap Between Astrophysics and Cosmology

    In their respective efforts to understand the universe and all it comprises, there is a telling gap between what cosmologists and astrophysicists
    study and how they study it: scale. Cosmologists typically focus on the large-scale properties of the universe as a whole, such as galaxies and
    intergalactic medium; while astrophysicists are more interested in testing physical theories of small- to medium-sized objects, such as stars,
    supernovae and interstellar medium.

    And yet the two fields are more closely aligned than it might seem at first glance, especially when looking at how the early universe was formed.

    How First Supernovae Altered Early Star Formation
    https://www.youtube.com/watch?v=aO1p0zNYUy0
    VIRGO
    VIRGO --- ---
    VIRGO
    VIRGO --- ---
    Poetická Labuť za svítání
    (Ne že bych musel pastovat každý nosič či modul, někdy je to ale skutečná nádhera.)

    Kliknutím sem můžete změnit nastavení reklam