BLACKHEAD: Ono to není zas až tak překvapivé, když si uvědomíme, jak ta perioda vzniká:
987654321 / 123456789 = 8 + 1 / 13717421,
rozklad na prvočísla pro toho jmenovatele je: 13717421 = 3607 × 3803 ... což neobsahuje žádné 2 ani 5 (2 × 5 = 10), pro hledání délky periody
p v desetinném rozvoji musíme použít celé to velké číslo. Pro
p platí, že 10
p-1 je dělitelné 13717421. Maximální možné takové
p je dle malé Fermatovy věty 13717421 - 1, takže to, že vyšlo
p = 6855006 je vlastně ještě celkem v pohodě, mohlo to jít i výš :)
Té výše uvedené podmínce 10
p-1 mod 13717421 samozřejmě vyhovují i celočíselné násobky 6855006, to asi nepřekvapí. Takový dvojnásobek mi přijde obzvláště zajímavý a vtipný: 6855006 × 2 ... úplně vypečený, že?
Proč? No je totiž roven 13710012, a když ho zmenším o tu jedničku, která už se nám tu mihla, dostanu 13710011. A to už něco znamená, konkrétně je to totiž už skoro ten původní jmenovatel 13717421. Něco málo ale ještě chybí, a to přihodit číslo 7410. Nicneříkající číslo? Kdepak, toto číslo je náš starý známý, jde o součet prvočísel v rozkladu původního čitatele, 7410 = 3607 + 3803. Kabala? Náhoda? Nemyslím si! :))
Větu "Pokud zbytkem po dělení 987654321 / 123456789 vydělíme čitatele tohoto zlomku a od vzniklého čísla odečteme jeho prvočinitele, získáme o jedničku menší číslo než je dvojnásobek délky periody desetinného rozvoje při dělení 987654321 / 123456789." si nechám vytisknout na tričko.