JVCNC: fakticky, zrovna můj zatím poslední (ale určitě ne finální) návrh z tohoto důvodu pro stratosférická solární letadla počítá s tím VTOL (Vertical Takeoff and Landing).
Uznám, že výhodnost skládacích křídel v případě VTOL je docela diskutabilní: bylo to myšlené k určitému zlepšení odolnosti vůči bočním poryvům větru (rozložené křídlo bude mít extrémně nízký wing loading, totiž), ale fakticky, takhle z hlavy samozřejmě nikdo nedokážeme posoudit, jestli by to mělo smysl, nebo ne.
Proč jsem k tomu dospěl? jednoduše, s účinností vrtulí v řídkém vzduchu souvisí parametr zvaný "rotor pressure", který se udává u vrtulníku. Samozřejmě, vrtulníky mají s řídkým vzduchem taky problém. Ale co kdybychom rotor vrtulníku v určité výšce (já odhaduju 6000m) překlopili, otáčky snížili (to musíme koneckonců i kvůli tomu, že s tlakem klesá rychlost zvuku a určitě nechceme řešit supersonickou vrtuli) - a udělali z toho stratosférickou vrtuli?
Samozřejmě: můj náčrt je potřeba brát "s několika tunami soli" (jak jsem taky četl někde na netu, jako parafrázi na "se špetkou soli", což je ustálená anglická fráze). Je to v podstatě blokové schéma: skládání obřích křídel byl problém buď konstrukční (teleskopické zasunování) nebo aerodynamický (v případě nějakého toho překládání). V případě vrtulníkovitého startu a přistání jsou rychlosti minimální a je známé, že vrtulník pod sebou v závěsu může pomalu zvedat i naprosto neaerodynamický tvar (fakticky pak řešíme pouze rozpětí rychlostí větru, ve kterých je to ještě jakž-takž ovladatelná). Při kolmém přistání elektrického vrtulníku se pak navíc vrací do hry i tolik vysmívaná rekuperace: stroj může od určité výšky vlastně klesat na přistání jako tzv. vírník (jak je to s odolností vírníků vůči poryvům větru ve srovnání s větroni to nevím, ale jediné fakticky systematicky provozované stratosférické letadlo, tedy U2, má po odlehčení vyčerpáním paliva s přistáváním obrovské problémy - fakticky, solární letadlo bude těžší o nespotřebované baterie, takže to bude nepatrně příznivější situace, ale zase asi bude mít plošné zatížení křídla od začátku ještě nižší, než U2, takže si moc nepomůžeme)
Obloukem se vracíme k nepříjemné otázce: "proč sakra solární prototypy NASA Pathfinder/Helios/Centurion nelétaly ve stratosféře 300 km/h":
1) spousta malých vrtulí asi byla méně efektivní, než by byla jedna či dvě stratosférické vrtule o větším průměru (důkaz: datasheet Solar Impulse 2)
2) vlastně doopravdy nevíme, jaká v maximální výšce vlastně byla dosažená rychlost (na wiki se udává jediná rychlost, nejspíš u země - minimálně na dostupných videích to tak vypadá)
3) vlastně doopravdy nevíme, jaký v maximální výšce vlastně byl úhel náběžné hrany (od té doby, co se o tohle téma zajímám, jsem pozoroval motorovým letadlem vlečený větroň, který dost viditelně stlačoval čumák dolů, aby nestoupal rychleji, než vlečné letadlo - tedy musel stoupat se záporným úhlem náběžné hrany - motorové větroně logicky tenhle problém nemají, mohou stoupat jak prudce chtějí). letadlo může dostoupat výše, než "na kolik je stavěné", pokud se zvýší úhel náběžné hrany - tím výrazně zvýšíme vztlak, ale na simulátorech je ale dobře vidět, jaký dopad to má na aerodynamické vlastnosti křídla (vlastně pak spotřebováváme víc tahu motoru na překonání odporu vzduchu - a méně nám ho zbude na dopřednou rychlost při nulovém úhlu náběžné hrany)
VTOL koncept elegantně řeší problém s tím, jak dostat do stratosféry křídlo, které by v hustém vzduchu dávalo prostě "příliš mnoho vztlaku" a současně prostě konstrukčně nezvládalo to, co ty větroně (tedy let "čumákem dolů", aby se vzlak omezil). jenom to nutně nemusí být skládací křídlo: při vertikálním startu a přistání nám může být celkem jedno, kolik místa stroj na zemi zabere (může např. např. z konvenční dlouhé dráhy, na kterou se křídlo vejde po délce, odrolovat do strany, trochu jako rak...). dvouplošníky s 200m rozpětím pak nejsou velký problém: i když budou potřebovat na start a přistání třeba čtverec 300x300m, pořád se dostaou na víc míst, než letadla, která pořebují aspoň kilometrovou zpevněnou dráhu...