Europe's Leaked Hydrogen Strategy Is Very Ambitious | OilPrice.com
https://oilprice.com/...y/Energy-General/Europes-Leaked-Hydrogen-Strategy-Is-Very-Ambitious.amp.html
in a recent Tracking Energy Integration 2020 report, the IEA calls hydrogen one of several integration technologies that are ‘increasingly crucial’ for a low-carbon energy transition. The report notes that important political momentum had been building through last year, listing ten international initiatives and national plans that appeared during 2019. These include top level G20 discussions and target-setting plans by Korea, Japan, Netherlands, Australia and Canada.
Clearly the hydrogen movement is at a critical moment when continuing innovation is required. The role of government will remain important as fledgling industries seek to gain scale and find markets. Governments will need to provide direct, targeted support for projects that can achieve technical and market advances. And they will need to help stimulate demand in sectors where good near-term opportunities appear.
...
The shifting emphasis can be seen especially in Northern Europe, where large concentrations of projects are now found. Renewable energy will power electrolysers to produce hydrogen for industries in northern industrial centers. Other projects focus on power and heat for urban districts. Key applications include large-scale electrolysis, carbon capture, utilization and storage (CCUS), and utilization of natural gas networks.
...
In Germany, a power-to-gas project in Emsland in the Ruhr region has been called ‘Hybridge’ for its capacity to couple electric and gas networks. In a partnership of transmission system operator Amprion and gas net operator Open Grid Europe (OGE), electricity from renewable energy will be converted, by means of electrolysis, into hydrogen and methane. The companies will deploy a 100 MW electrolyser, with the resulting hydrogen transported by an OGE hydrogen pipeline and the existing gas pipeline network throughout the Ruhr and beyond. The project is anticipated to start operation in 2023.
In France, in the Les Hauts de France region around Dunkirk, one of the world’s most ambitious power-to-gas projects will build five 100 MW hydrogen electrolyser production units over five years. The project, a partnership of France’s H2V Industry and Norway’s HydrogenPro, will introduce hydrogen into the natural gas distribution network in order to decarbonize the natural gas used for heating and cooking as well as for transport.
These ambitious European projects have large-scale electrolysis counterparts in North America. Most notable is a project of the British Columbia-based Renewable Hydrogen Canada (RH2C), which is backed by a private sector utility and investors. The company is planning to build a large electrolysis plant in BC, to produce renewable hydrogen through water electrolysis powered by local hydropower and winds off the Rockies.
...
An enormous pilot project to convert the gas networks to hydrogen in the north of England is being planned now. First announced in 2016, the H21 North of England (H21 NoE) project, is a collaboration of two British gas distributors, Northern Gas Networks and Cadent, and Norway’s Equinor (formerly Statoil). They have produced a hydrogen blueprint that will utilize the existing natural gas distribution infrastructure serving a region of 5 million inhabitants including several large cities for domestic and industrial users, with applications including heat, power and transport.
The project’s planners view it as a way to achieve the ‘deep decarbonization’ that could not be reached with renewable electric power alone. To do so will require carbon capture and storage (CCS). Equinor’s role is to build a hydrogen production facility utilizing a standard reforming process with natural gas. The captured CO2 will be transported offshore to undersea storage. A specially built hydrogen transmission pipeline will link to the local gas distribution networks. The new transmission pipeline is required because injecting hydrogen into gas transmission pipelines is more difficult (although Italy’s Snam has already demonstrated the feasibility of blending hydrogen up to 10% in gas transmission grids).
Project implementation is to occur between 2028 and 2034. It is anticipated to achieve deep decarbonization of 14% of the UK's heat demand by 2034. Its large scale and significant impact on carbon emissions will make H21 NoE the world’s first at-scale hydrogen economy. Should it succeed, it will lay a basis for expanding such a system across the entire UK, decarbonizing a large percentage of domestic heat, transport and power by 2050
TADEAS,
TADEAS,
TADEAS,
TADEAS,
TADEAS,
TADEAS