ONDRA_99:
CYBERWOLF: no tak především nevím, proč vyžadujete přesné počítání s nepřesnými čísly. Přece většinu parametrů, typu suchá hmutnost, apod. vůbec neznáme. Na co se ptáme je v podstatě "co se stane, když tenhle konkrétní parametr bude n-násobný?"
Ciolkovského rovnice není žádná raketová věda (pun intended)
Ciolkovského rovnice – Wikipediehttps://cs.wikipedia.org/wiki/Ciolkovsk%C3%A9ho_rovnicePokud zdvojnásobíme výtokovou rychlost, tak při stejném množství reakční hmoty (spotřebovaný xenon u konvenčního iontového motoru, spotřebovaný katodový drát u svářečkového iontového motoru) bude delta v taky dvojnásobné (až takhle jednoduché to je). Jediné, co by nás mohlo zastavit, že by suchá hmotnost byla větší kvůli větší hmotnost toho pulsujícího elektrického zdroje oproti zdroji konvečního iontového motoru... jenže ciolkovského rovnice anii nezohledňuje, jakým mechanismem reakční hmotu urychlujeme: zohledňuje prostě jen kolik reakční hmoty ubude a jak rychle jí dokážeme odhazovat
Takže fakt nevím, co tu řešíte, je to fakt až tak jednoduché, jak jsem to napsal. Výkon potřebný pro dosažení výtokové rychlosti rovnice nezohledňuje, ale zohledňuje ho zákadní vzorec pro kinetickou energii: pro dvojnásobnou rychlost budeme potřebovat 4-krát/2 tolik energie - tzn. 2, pro trojnásobnout 9-krát/2 tedy 4.5-krát, a ta energie samozřejmě předpokládá pro konečnou dobu trvání manévru nějaký minimální výkon. Ale současně pokud ten větší výkon uvolňujeme v podobě krátkých pulsů - což je asi pointa toho Neumanova drivu - tak trvalý příkon může být pořád stejný a akorát manévr potrvá déle, ale na konci bude delta-V větší (u iontových motorů jsme ale na dlouhé manévry celkem zvyklí)
Tak např. pro 2x větší výtokovou rychlost stačí se stejným příkonem (např. stejné solární panely) pouze udržet rytmus, kdy motor je půlku času pod příkonem a půlku ne (je to hodně zjednodušené, ale dejme tomu, půlku času nabíjíme kondenzátor a pak půlku času vyrábíme tu plasmu a urychlujeme ji, i když to je hrubé zjednodušení). Výsledné delta-V, tedy za předpokladu 2x takové doby manévru (doby trvání stálého příkonu), bude taky dvojnásobné - a to při stejné počáteční i konečné hmotnosti urychlovaného tělesa.
Je to geniální a divím se, že to někoho nenapadlo dřív (třeba mě, sakra). Navíc pulsy iontového motoru pořád vytváří tak nízký tah (i při té vysoké únikové rychosti), že ty pulsy nezpůsobí žádné akustické vibrace, nebo tak něco. Škálovatelnost pro cubesaty je geniální, konstatní je hmotnost toho kondenzátoru a motoru, ale solární panel lze zmenšit na polovinu a prodloužit dobu mezi pulsy na dvojnásobek, a nestane se pořád skoro nic. Nebo jinak, pokud to použijeme na pohon sondy s RTG generátor, tak postupný pokles výkonu v souvislosti s poločasem rozpadu bude znamenat jen delší interval mezi pulsy - ale motor bude pořád schopný vytvářet tah..