Local emissions of toxic substances from the manufacturing stages are an environmental aspect brought up by Hawkins et al. (2013a) as a possible disadvantage of electric powertrains, and especially in connection to battery production. Few other studies in Table 2 include the human toxicity potential (HTP), and to broaden the analysis of the topic, Fig. 6 presents our own results (Messagie 2013) for HTP in units of 1,4-dichlorobenzene (DCB) equivalents, a well-known pesticide. Our results confirm the earlier work of Hawkins et al. (2013a) and indicate significantly higher impact from BEVs than ICEVs with respect to toxicity. The largest impact comes from the equipment cycle of the non-powertrain parts (base vehicle) for both the BEV and the ICEVs. But in the case of the BEV, the components specific to the electric powertrain (Li-ion battery, electric motor and power electronics) together cause close to half of the overall impact (44 % in this specific case). In the ICEVs, the small electric starter motor and catalytic converters in the conventional propulsion system have an important impact.