jasne, to musi byt urcite vic bodu. tohle mi napsali:
3) Da se to taky normalne spocitat. (vim ze na pocitani teziste soustavy kulicek, jsem narazil na doucovani s detma v prvnim rocniku gymplu).
Kdyz vezmes treba trojuhelnik, kterej ma souradnice vrcholu treba [1;1], [0;3], [5;2], tak se poloha teziste spocita tak, ze se proste spocita "prumerna souradnice tech vrcholu"
Cili jak pro x-ovou, tak pro y-ovou slozku, se spocita jeji prumerna hodnota, cili
x-ova souradnice teziste je prumer z cisel 1 0 a 5, coz jsou 3, a y-ova souracnie je prumer z 1,3 a 2, coz je taky 2. Souradnice teziste je teda [3;2]
Nezavisi to vubec na volbe pocatku souradnic a vubec nevadi, ze treba nektery bod bude mit souradnici [0;0], teziste proste vyjde spravne v dany soustave.
No a tahle metoda funguje i libovolne sloziteho obrazce, akorat nestaci brat body po jeho okraji, ale musi se pocitat i s bodama, co jsou uvnitr toho obrazce.
Takze prakticky by se to dalo realizovat tak, ze by se na pocitaci vzala mapa radotina, a vyznacily by se pixely, ktery patrej do radotina. A pro vsechny tyhle pixely (kterych teda bude strasne moc), by se jednoduchym programem spocitala ta "prumerna souradnice". Cim vic tech pixelu bude (tj. cim vetsi rozliseni to bude mit), tim samozrejme bude vysledek presnejsi. Nejaky hodne hruby odhad by sel mozna udelat i na ctvereckovanem papire, s dostatecnou trpelivosti :)
No a kdyz to dojde jeste dal, timhletim zpusobem se da pocitat teziste i normalnich veci. Dokonce i takovych, ktery nemaj vsude stejnou hustotu. Pokud ma kazdej pixel jinou "hmotnost", tak se proste misto normalniho prumeru, pouzije vazeny prumer, tzn kazda ta hodnota se prenasobi "vahou" toho bodu, a to, cim se pak deli, neni pocet vsech bodu, ale soucet jejich vah.