KULA:
BRENMCGUIRE: pokud jde o čistě gravitační urychlení (bez motorického manévru v "peri-iovu"), tak na hmotnosti v podstatě nezáleží - pouze na geometrii, tzn. na největším přiblížení k planetě. prostě jakkoliv velké těleso získá příslušné delta-V (že to větší těleso o něco víc "pohne jupiterem", to nám může být celkem fuk :-)
další problém je, že průlet kolem Saturnu je oproti průletu kolem Jupiteru celkem zanedbatelný... sice Saturn nemá zdaleka tolik radiace, takže je možné letět těsně nad atmosférou, ale stejně se obávám, že gravitační urychlení od Saturnu bude něco jako 10% toho od Jupiteru (mj. proto, že oběžná rychlost Saturnu kolem Slunce je výrazně nižší, než oběžná rychlost Jupitera .. a gravitační manévry jsou i o tomhle - když se na kole chytneme náklaďáku, můžeme se tím urychlit na rychlost náklaďáku, ale ne víc)
Domnívám se, že kombinace gravity-assist manévrů s průlety kolem Země, Venuše a Jupiteru bude efektivnější, než letět zdánlivě "jednodušeji" kolem Jupiteru a Saturnu. Kromě toho, byla tu mise Ulysses, která použila průlet kolem Jupitera k něčemu jinému, než sondy do hlubokého kosmu:
Ulysses (spacecraft) - Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Ulysses_(spacecraft)#Jupiter_swing-by
Teď nevím, jestli úplně nemlžím - ale možná by šlo manévrem podobným Ulyssesu zkonstruovat docela efektivní gravitační prak např. Země - Venuše - Země - Jupiter - Země - (Venuše) - Jupiter. Pravděpodobně by tak šlo sondu urychlit víc, než průletem kolem Saturnu (ale někdo by to musel samozřejmě nacpat do simulátorů - já používám intuitivně-magický přístup a zásadně nic nepočítám :-)
"Dual Jupiter assist" sice asi nedává smysl, zato:
I think the Jupiter-Sun dual gravity assist was suggested for some interstellar probe
Unmanned Spaceflight.com > Mission To Sedna
http://www.unmannedspaceflight.com/lofiversion/index.php/t4905.html
... což je ale optimální zkombinovat zase s nějakou solární plachtou, ještě, protože cca na úrovni dráhy Merkura už dávají slušný tah (a navíc, dokud se k Slunci blížíme, tak vyplatí sluneční plachtou naopak brzdit a tím ke Slunci spadnout co nejhlouběji - a teprve po průletu kolem něj zrychlovat se "Sluncem v zádech"). Každopádně, když už se jednou necháme od Jupitera katapultovat zpět ke Slunci, tak nemá smysl paběrkovat u kamenných planet a vyplatí se využít jako gravitační prak rovnou Slunce (pokud to všem konstrukce sondy umožní)
Extrémním případem který pamatuju ze sci-fi by gravitační manévr Clark "Rámy", který pro gravitační navedení se k dalšímu mezihvězdnému cíli použil přímo průlet horními vrstvami sluneční atmosféry :-) obávám se, že pozemské materiálové inženýrství ale zatím není tak daleko - viz
Gravity assist - Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Gravity_assist#Limits_to_slingshot_use
základy jde skutečně pochytit i s KSP, když se budete (napoprvé marně :-)) snažit "spadnout" z dráhy kolem Munu zpět na Kerbal a zjistíte, že je to taky energeticky náročný manévr :-). no, a úplný prazáklad jde pochopit i z odletu ISRO Mangalyaana nebo dnes právě Exomarsu (sice jen trojí zvyšování elipsy a během jediného dne, ale princip v podstatě pořád stejný)