Zajímavě ke vztahu racionálních a reálných čísel ve své Alternativní teorii množin přistoupil profesor Petr Vopěnka. Jestli si to dobře pamatuju, tak si vystačil se spočetnou množinou přirozených čísel N. Vyšel z metafory omezenosti lidských smyslů, schopností a možností. Pro člověka jsou opravdu velká čísla příliš velká (tak velká, že se k nim přičítáním jedničky nikdy nedostaneme :-).
Tohle napodobil tím, že třída přirozených čísel bude obsahovat vlastní podtřídu (začínající jedničkou) uzavřenou na následníka, tu nazval FN. (Ona jich takových samozřejmě obsahuje mnoho, ale FN je průnikem všech takových).
Pak z N vytvořil klasickým způsobem racionální čísla. A ty faktorizoval ekvivalencí x~y když |x-y| < 1/n pro každé n z FN. Takhle z nespojitých racionálních čísel vytvořil kontinuum podložené jednoduchou algebraickou strukturou. Umožňovalo to (s pomocí pár axiomů, se kterými nebudu obtěžovat) třeba počítat limity jak za Leibnize.