• úvod
  • témata
  • události
  • tržiště
  • diskuze
  • nástěnka
  • přihlásit
    registrace
    ztracené heslo?
    SALVATORCentrála pro rovnoměrnou distribuci mírně zajímavých faktů
    Přišli jste na něco zajímavého? Z historie, vědy, popkultury, nebo bežného života? Podělte se o to. Pozor na faktoidy - ověřujte zdroje.



    Zajímavé, až interesantní kanály na YT:


    Směs - spíš technické obory
    Veritasium
    Kurzgesagt
    Vsauce
    Vsauce 2
    Vsauce 3
    Vsauce 4
    Tom Scott
    SmarterEveryDay
    Colin Furze
    Objectivity
    The Royal Institution
    Joe Scott
    ČRo Planetárium


    Matematika
    Numberphile


    Fyzika
    Physics Girl
    Steve Mould
    Sixty Symbols


    Chemie
    Periodic Videos
    NileRed


    Astronomie
    Astrum
    PBS Space Time


    Příroda
    Nature Bites


    Lingvistika
    NativLang
    Langfocus


    Teorie hudby
    Adam Neely


    Historie
    Fall of Civilizations
    Mark Felton Productions
    Dejepis Inak
    History Time


    Potraviny
    Adam Ragusea
    Tasting history with Max Miller


    Film
    Film Courage


    Lingvistika/Mytologie/Etnologie/Kulturní antropologie
    Crecganford
    The Histocrat


    Jídlo/Debunking
    How To Cook That


    Nevím, neznám, nezařaditelné nebo zatím nezařazeno
    Branch Education
    ColdFusion
    Today I Found Out
    CGP Grey
    rozbalit záhlaví
    BONEMINA
    BONEMINA --- ---
    TRISSIE: někde jsem kdysi četla přepočet, že let jedné V2 vyžadoval dva vagony brambor.
    TRISSIE
    TRISSIE --- ---
    TRISSIE: jinak komu se nechce rozkliknout odkaz a zajímá ho, jak to bylo s těma martini, tak:

    A former engineer from Peenemünde estimated that the alcohol content in one rocket was about the same as 66,130 dry martinis
    CHEVALIER
    CHEVALIER --- ---
    A co se týče zpoždění, Áda zkrouhnul podporu protože si na začátku války myslel že to vyhraje těmi zbraněmi, co už má k dispozici.
    Dávám to z hlavy ale v 41-42 mělo Peenemünde pouze poloviční dodávky oceli, než požadovalo, a tak to bylo se vším, i s lidmi. Až když začlo Ádovi týct do bot tak si vzpomněl na vunderwaffe...
    TRISSIE
    TRISSIE --- ---
    ATOMIKS: https://www.popsci.com/blog-network/vintage-space/how-many-martinis-can-you-fit-inside-v-2-missile/ + cross checking via wiki (česká a primárně anglická)
    via TIL na Redditu, samozřejmě, bez mučení přiznávám, že sem hážu zábavné věci, které tam najdu.
    CHEVALIER
    CHEVALIER --- ---
    CHEVALIER: https://museum-peenemuende.de/zeitreise/raketenantrieb/

    Die A4-Rakete wurde durch einen Treibstoff aus dem Brennmittel, einem Gemisch aus 75 % Alkohol und 25 % Wasser, und flüssigem Sauerstoff als Oxidator angetrieben.

    Takže se omlouvám.
    Bohužel jsem zachytil i informaci, která přímo tento údaj rozporovala.
    CHEVALIER
    CHEVALIER --- ---
    ATOMIKS: No, píšou to i tady..

    A4/V2 Makeup.
    https://www.v2rocket.com/start/makeup/design.html
    ATOMIKS
    ATOMIKS --- ---
    TRISSIE: k tomu by mě zajímal src
    CHEVALIER
    CHEVALIER --- ---
    TRISSIE, CHEVALIER: Zatím nacházím jen ten ethanol ale někde se to řešilo. Dokonce se traduje že obsluha říkavala že palivo do A-4 je "dobrý pití". Ale ethanol na hlavní propulzi by být neměl.
    CHEVALIER
    CHEVALIER --- ---
    TRISSIE: Prosím Tě teď to neozdrojuji ale alkohol se používal k pohonu turbočerpadel. Hlavní palivo bylo jiné.
    TRISSIE
    TRISSIE --- ---
    Můžu od teoretické fyziky odbočit k fyzice aplikované, alias k balistickým střelám?

    O rané balistické řízené střele V-2 použitá Německem v 2. světové válce jste asi slyšeli, pokud ne, můžete si osvěžit své znalosti zde:
    V-2 – Wikipedie
    https://cs.wikipedia.org/wiki/V-2
    Česká wiki se omezuje na konstatování, že "zbraň však byla nasazena příliš pozdě".

    A to je právě ta zajímavá otázka! Proč byla střela, jejíž vývoj započal už v roce 1936, a do jejíhož vývoje nacisti investovali 2 miliardy dolarů (v cenách roku 1944), nasazena až v roce 1944?
    Odpověď je... dalo by se říct, lidská a pochopitelná. Tahle střela totiž jako palivo používala etanol, který už v předválečné a o to víc válečné ekonomice do výzkumu fasovali na příděl v omezeném množství. A z nějakého důvodu se jim neustále strašně vypařoval a nikdy ho nebylo na testy dost!
    Vedoucí výzkumu, generál Walter Dornberger, nebyl úplný blbec. Nejdřív nechal smíchat palivo s růžovou barvou, ale stál proti nefalšovaným raketovým vědcům, kteří do týdne zjistili, že stačí růžovou vodičku přefiltrovat přes bramboru a mají zase čistý alkohol. Další pokus, přimíchání laxativ/emetik, vedl ke snížené produktivitě vlivem častých zdravotních přestávek (u těch zaměstnanců, kteří vůbec přišli. Občas jich chybělo ze zdravotních důvodů tolik, že se testovací start ani nemohl uskutečnit). Metylalkohol vedl přesně k tomu, co se dalo čekat - jeden zaměstnanec zemřel a další oslepl. No a volat na to SS se generálovi přece jen nechtělo (dokonce se je aktivně snažil držet mimo), tak holt výroba začala až v roce 1944. Celkem těchhle raket Němci vyrobili asi 6000 a odpálili 3172 (a zabili tím asi 7 tisíc lidí), což teda potenciál tajné zbraně k zvrácení průběhu války nenaplnilo.

    Holt za vším hledej ženskou, a za čím nenajdeš ženskou, za tím najdeš ožralého chlapa!
    GUMBA
    GUMBA --- ---
    HOWKING: No, není to aplikace fyziky pevných látek, to je samotná fyzika pevných látek :) To máš imho trochu posunutou definici toho, co je aplikovaná fyzika. Resp. pokud považuješ nějaký jev "jen" za aplikací fundamentálních zákonů (to jsou jaké btw.), tak touto optikou by byla "aplikovaná" úplně celá fyzika, a takový pojem ztrácí smysl. Aplikovaná fyzika řeší reálné uplatnění nějakých fyzikálních jevů či principů, tedy vychází z té "čisté" fyziky (tady čeština nemá moc vhodný termín odpovídající "pure" physics) a aplikuje ji na nějaký konkrétní pod-problém. Např. když lidi jako Masato Sagawa vymýšleli, jak najít lepší permanentní magnety, tak využili pure physics (experimentální i teoretické výsledky týkající se výměnných interakcí a dalších relevantních jevů v magnetických systémech) a aplikovali to - řešili, jak atomy železa od sebe více vzdálit (proto např. do NdFeB nacpali ten bór). No ale předcházela tomu ta ne-aplikovaná (čistá) fyzika, kde bylo samozřejmě jak hodně experimentů (magnetická, strukturní a další měření), tak i hodně teorie (někdo ty poměrně složité zákonitosti z kvantové teorie a dalších fundamentů musel odvodit, aby dal těm experimentům význam, nebo aby ty experimenty na základě těch teoretických předpovědí někdo mohl provést).

    HOWKING: Pro mě jsou teoretická fyzika taky fundamentální zákony mikro a makrosvěta. Akorát to pro mě nejsou jen 4 základní interakce, teorie relativity a kvantovka, takže se fakt asi neshodneme :) Imho to je jako tvrdit, že pokud něco přímo nevychází ze ZF(C) axiomů, tak to je aplikovaná matematika. Prostě ve fyzice jsou některé systémy tak složité, že nelze vyjít ze Schrödingerovy rovnice nebo podobných fundamentů a věc vyřešit. Někdy je tam půl tuctu mezikroků, kde se věc různě aproximuje, aby to šlo vůbec nějak uchopit, ale pořád je to čistá teorie.
    ERRTU
    ERRTU --- ---
    Červený trpaslík - Kocour
    https://youtu.be/Lg4hhX9KM2Q
    HOWKING
    HOWKING --- ---
    Ona v podstatě říká, že jsme spoustu let nepohnuli s pochopením světa.
    HOWKING
    HOWKING --- ---
    Asi každý chápeme jinak co to je teoretická fyzika. Pro mě to jsou fundamentální zákony makrosvěta a mikrosvěta (a doufám, že jednou budou jedny bez rozdělení). Prostě věda o tom jak svět funguje. Vše ostatní je jen aplikace a dedukce dílčích projevů. Podle tebe je teoretická fyzika to, co jde teoreticky vysvětlit pomocí těch fundamentů. Je to úhel pohledu. Možná by to měl někdo jednoznačně definovat. Ale mám představu co je to teoretická fyzika společnou se Sabinou. Ty ne. Neznamená to, že nemá pravdu, jen pro mě mluví o celé teoretické fyzice a pro tebe o její části.
    HOWKING
    HOWKING --- ---
    Většinu toho co zmiňuješ je aplikace fyziky pevných látek, kvantové teorie pole a statistické fyziky. A to je teoretická fyzika, akorát už hooodně stará a nic se v ní podstatně nehýbá. A jsem zase zpět u svého - Sabina má pravdu :)
    HOWKING
    HOWKING --- ---
    GUMBA: Zmíníš v textru spousty měření, pokusů, aplikací a nakonec tučně napíšeš je a tím to změníš? Asi se neshodneme :D
    GUMBA
    GUMBA --- ---
    E2E4: No zní to dost debilně, o tom žádná. Ale jsou to velmi nadějné věci, i když obojí je vlastně ještě v "předaplikačních" plenkách. Tím myslím, že jde o robustní, prokázané a fyzikálně pochopené věci, a zhruba se i tuší, k čemu to může být dobré, jsou i návrhy a prototypy různých devices. Toto se imho zatím nedá říct o těch topologických záležitostech (topologické izolátory a ta magnetická zvěrstva - skyrmiony a spol.) ... tam imho zatím moc není jasná aplikace, ve smyslu že by si dnes někdo představil nějaký device.
    Nicméně spintronika je tedy ještě aplikačně trochu v plenkách, prostě to ještě pořád naplno nepřevzali "inženýři". Malá paralela: když byl objeven tranzistorový jev, tak se vlastně už tak nějak předem věděla jasná aplikace field-effect tranzitoru (FET), což principiálně byla trioda, která se běžně používala. No, a že dnes jsou desítky typů tranzitorů, používá se to prakticky v každé elektronice, to asi nemusím řešit ... a to je právě výsledek toho, že ten fyzikální princip inženýři takhle brutálně rozvinuli.

    Takže dnes se má za to, že spintronika by mohla ulevit polovodičovému průmyslu primárně v tom, že by se vedle náboje elektronu využil také jeho spin (odtud název, elek-tronika -> spin-tronika). Takže na tranzitoru by místo 0 (malý proud) a 1 (velký proud - to je ten nepříjemný faktor vedoucí k Moorově zákonu, ta jednička na tranzistoru nám v elektronice nejvíc topí) bylo obojí realizováno jen odlišnou orientací elektronových spinů (up/down) a obě polarizace by měly jenom ten malý proud, který topí řádově méně. Dnes už lze dosáhnout v mnoha různých systémem polarizovaný proud nad 95 %, což by pro aplikaci stačilo. (Ale je prostě rozdíl device ve fyzikální laboratoři a někde v miliardových sériích na lince Foxconnu...)

    Další aplikací spintroniky se předpokládá v oblasti záznamu. To že dnes máme vedle SSD pořád i "klasické" (plotnové) HDD, není proto, že by se fyzici od roku 1986 (objev obří magnetorezistence - Grünberg&Fert) flákali, vyzkoušelo se toho od té doby fakt hodně a dost toho i funguje, akorát to nepředčí nebo dostatečně nepředčí současná řešení. (To je trochu podobné jako současná EV, která v některých parametrech prostě zatím prohrávají se spalováky, které ale mají desítky let vývoje náskok.) No a to druhé ezotericky znějící slůvko, altermagnetismus, je právě prodkutem pokročilejšího zkoumání, jak tu spintroniku k tomuhle využít. Hezké je, že má silnou českou stopu, zásadně k tomu přispěla skupina Tomáše Jungwirtha z FZU AV. A v souvislosti s tématem níže to krásně ilustruje vývoj zhruba během těch 2 posledních dekád. Původně (okolo r. 2000) na to šli ze strany magnetických polovodičů (např. dopovat GaAs magnetickým manganem), pak se došlo k materiálům, které všechny potřebné věci splňovaly. Akorát se po nějaké době snažení ukázalo, že pokud ta látka bude feromagnetická (všechny elektronové spiny jsou v dané oblasti jedním směrem, např. všechny jsou "up"), tak to sice bude fungovat, bude to ale pomalé. Prostě ty spiny ve feromagnetu principiálně nejdou za daných podmínek otočit rychleji (protože s sebou vlečou celou tu magnetizaci, zápis jednoho bitu by tedy trval moc dlouho), takže to ve srovnání se současnými technologiemi (RAM) není a nikdy nebude dost, nikdo proto nenaleje velké peníze do rozvoje, když nemá přesvědčivý potenciál se díky inženýrským inovacím za pár let dostat řádově mnohem výše než současné technologie. (První generace HDD s magnetorezistenční čtecí hlavou místo cívky měly desítky či stovky MB a dnes jsme po desetiletích inovací ale se stále stejným fyzikálním principem na desítkách TB). Takže se zkoumalo, jak to udělat rychleji než ve feromagnetu. Vědělo se, že antiferomagnet může být o několik řádů rychlejší (elektronové spiny se tam střídají up/dn, takže celková, makroskopická magnetizace je nula, a tudíž věci nezpomaluje), ale nějakou dobu trvalo, než se přišlo na to, jak tam tu polarizaci (informaci) uložit a přečíst. Je k tomu potřeba využít symetrii krystalové mřížky, tj. nebrat ten krystal jen jako nezávislou matrici, na které se ten magnetismus odehrává (feromagnetismus up-up-up-up-up-... nebo antiferomagnetismus up-down-up-down-..., nebo samozřejmě existují i komplikovanější struktury, např. nekolineární), ale využít přítomnost či nepřítomnost určitých symetrií té krystalové mřížky (jde o tzv. "time-reversal symmetry", což je takové divně znějící označení. Souvisí s "inverzí", což je symetrie, kdy se vše překlopí okolo jednoho bodu, vše na souřadnici r je stejné jako na souřadnici -r. Time-reversal dělá totéž s časem, což zní divně, ale prostě ve fyzice veličiny podle své parity obrátí své znaménko s inverzí nebo time-reversal symetrií. Přeloženo do kontextu: zde se touto symetrií např. překlopí spiny a hybnosti, ale už ne polohy). A tím vlastně jaksi "mimochodem" objevili právě ten altermagnetismus., který spinovým uspořádáním velmi připomíná antiferomagnetismus (také je celková magnetizace nulová, protože je stejný počet spinů up jako down), ale dá se ukázat, že to není ekvivalentní antiferomagnetismu, právě proto, že to není jen o tom střídání (kdy symetrie krystalové mřížky se do toho neplete), je tam nutná určitá souhra mezi spiny a mřížkou. Důležité je, že z 230 prostorových grup krystalové symetrie tuhle speciální kombinaci umožňuje několik desítek z nich, takže existuje poměrně široká třída materiálů, kde altermagnetismus může fungovat. (A on samozřejmě musel být realizován milionkrát už dříve, akorát nikoho nenapadlo udělat experiment, kterým by ho rozlišil od antiferomagnetismu.)

    A to je tak zcela nová věc (2024), že dnes asi vůbec nikdo neví, zda to bude mít nějaké praktické aplikace (imho určitě ano), a jaké vlastně budou (to imho nikdo dnes nedohlédne, to fakt může být nějaká divočina, která ani nemá současnou analogii).

    Takže ještě v souvislosti s předchozí diskusí: tohle je teoretická fyzika (akorát se netýká gravitace a vesmírů, jak obvykle vetšina lidí vnímá teoretickou fyziku), a je to velmi velký pokrok. Pro srovnání, feromagnetismus lidstvo zná stovky let, antiferomagnetismus cca 100 let (30. léta Louis Néel), a teď je tu další, úplně nový typ. Imho je to objev srovnatelný např. s objevem další fundamentální interakce. A není to vše, ještě jsou tam v prinicpu i vyšší řády těchle kombinací (space inversion vs. time-reversal).
    GUMBA
    GUMBA --- ---
    HOWKING: U nás používáme označení Pišvejcova konstanta :)
    HOWKING
    HOWKING --- ---
    Def.: Bulharská konstanta je číslo, kterým musíme vynásobit výsledek, aby vyšel správně.
    HOWKING
    HOWKING --- ---
    Ale ono to pude. Viz onen Verlinde. Na entropii úplně toho nejvíc mikrosvěta mu vychází Einsteinův gravitační zákon a co víc, pokud ovlivňuje entropii okolní hmotou, tak mu díky jiné entropii ve voidech vychází správně i rotační křivky galaxií aniž by potřeboval k výpočtu bulharské konstanty jako temnou hmotu, nebo podivně se chovající setrvačnost jako MOND.
    HOWKING
    HOWKING --- ---
    IORETH: Ale i to vysvětlení, že to nejde bude vlastně oním sjednocením. Určí hranice.
    Kliknutím sem můžete změnit nastavení reklam