COMMANDER: To je imho docela dobrá představa takto velkého čísla. Ostatně čísla do cca 10
100 jsou zhruba tak limit, co si "lze představit", ve smyslu že to lze vztáhnout k počtu něčeho fyzicky relevantního (např. ten počet zrnek písku, počet částic ve vesmíru apod).
Někdy je však potřeba jít dál, dovolte mi tedy odložit si zde pár mírně zajímavých faktů :)
Např. kdyby to obrovské množství 10
41 zrnek písku mohlo mezi sebou vzájemně interagovat každé s každým. Obvykle (ve fyzice) je ta interakce omezená vzdáleností, nicméně i bez toho omezení by pro 10
41 zrnek bylo těch interakcí "jen" řádově 10
82, sice o hodně víc, ale vlastně ne dramaticky, např. stále to lze zapsat stejnou notací s mocninou desítky.
Na některé matematické problémy už tento popis velmi rychle přestane stačit - teorie grafů a související oblasti občas potřebují opravdu velká čísla. Lze se k nim dobrat, pokud v předchozí úvaze se zrnky písku začneme ty "interakce" mezi zrnky třeba obarvovat, prostě jim dáme nějaké další parametry a budeme na ně klást nějaké další podmínky. Pak ty počty porostou podstatně rychleji a začnou být potřeba opravdu velká čísla, tak velká, že si to už prostě lidsky představit nelze.
K největším a zároveň nejznámějším asi patří tzv. Grahamovo číslo, které ve své době vyjadřovalo určitý horní limit (označme ho g
64) pro počet dimenzí nadkrychle v jistém matematickém problému(nadkrychle ve 2D je čtverec, ve 3D krychle, ve 4D a víc prostě n-dimenzionální nadkrychle; má 2
n vrcholů, kde n je počet dimenzí). Jde o to, že hrany nadkrychle obarvujete dvěma barvami a ptáte se, zda v té spleti barevných čar bude vždy (!! tj. pro každé obarvení dané nadkrychle) existovat alespoň jedna skupinka 4 vrcholů, která leží v jedné rovině a zároveň všechny spojnice těch 4 vrcholů mají stejnou barvu. Graham s kolegou přišli na to, že řešení existuje, ta dimenze n musí být větší než 6 (dnes zpřesněno na větší než 12) a zároveň menší než velmi velmi velké číslo g
64 (dnes zpřesněno na podstatně menší číslo, nicméně také stále nepředstavitelně obrovské). Ještě než se dobereme k tomu, jak nechutně velké g
64 vlastně je, tak malá poznámka. Celé to zní na první pohled jako jasná a naprostá píčovina. To určitě zní. K čemu ale takové a podobné věci můžou být dobré? No tahle třída problémů, kdy něco řešení má a pak ho mít přestane, nebo naopak, nebo má, nemá, pak zase má atd atd, je vlastně velmi zajímavá. Třeba souvisí s NP úplnými problémy současné computer science a matematiky (a to se úzce týká hlubokých neuronových sítí, tedy AI a spol). Je-li nějaký problém tzv. NP úplný, znamená to, že ho neumíme obecně vyřešit v polynomiálním čase. Důležité je tam ale to slovo obecně. Protože některé speciální případy toho problému jsou naopak velmi snadné. Čili se ukazuje, že řešitelnost toho problému má tři hlavní oblasti: jednoduše řešitelná (triviální na první pohled), řešitelná složitěji (nějakým komplikovaným algoritmem), a neřešitelná (=řešitelná v exponenciálním čase). A ty hranice jsou dost ostré a lze matematicky dokázat, že tam jsou, na čem závisí atd ... a to i trochu připomíná tu Grahamovu šílenost.
Kolik je tedy g
64? Je na to potřeba speciální notace, např. Knuthova (ano, ten Donald Knuth co vymyslel TeX a napsal bibli TAOCP). Typicky se v Knuthově a podobných notacích vezmou běžné matematické operace sčítání, násobení a mocnění a zobecní se na hyperoperace. Jako je násobení opakované sčítání stejného čísla, tak je mocnění opakované násobení stejného čísla, takže další v posloupnosti bude opakované mocnění stejného čísla (tj. 2+2+2+2, 2.2.2.2, 2^2^2^2 ... mocnění toho exponentu a exponentu jeho exponentu atd.). Tomu opakovanému (iterovanému) mocnění se říká tetrace. Iterováním tetrace vznikne pentace ... a tak dále. V Knuthově zápisu se normální mocnění zapíše pomocí šipky, např. 2↑4 je 2^4, tetrace je 2↑↑4 = 2↑(2↑(2↑2) = 2^2^2^2 = 2^16 = 65536, pentace je 2↑↑↑4 = 2↑↑(2↑↑(2↑↑2), což už je 2^2^2^65536. To opravdu rychle roste, že?
A nyní ta Grahamova čísla:
g
1=3↑↑↑↑3, zkráceně zapsáno jako 3↑
43, jde tedy o šestou hyperoperaci, sextaci. Tedy rovnou první číslo je nepředstavitelně velké a ani ho nelze napsat v rozumném tvaru 10^něco.
g
2=3↑
g13 ... tedy ne sextace ale g
1-ace. Hyperoperace řádu toho obřího čísla g
1 potom g
3=3↑
g23
... a tak dále až do g
64. ... vzít vesmír, do každého bodu Planckovy délky dát další vesmír a u všech těch vesmírů dát do každého bodu zase další vesmíry a takhle to opakovat v krocích, jejichž počet je roven počtu těch Planckových bodů ve vesmíru .. a stejně všech těch vesmírů bude méně než g
64 :)
Je asi jasné, že všechna čísla g
n jsou mocniny, malou zajímavostí budiž, že g
64 končí na sedmičku :)