• úvod
  • témata
  • události
  • tržiště
  • diskuze
  • nástěnka
  • přihlásit
    registrace
    ztracené heslo?
    SALVATORCentrála pro rovnoměrnou distribuci mírně zajímavých faktů
    Přišli jste na něco zajímavého? Z historie, vědy, popkultury, nebo bežného života? Podělte se o to. Pozor na faktoidy - ověřujte zdroje.



    Zajímavé, až interesantní kanály na YT:


    Směs - spíš technické obory
    Veritasium
    Kurzgesagt
    Vsauce
    Vsauce 2
    Vsauce 3
    Vsauce 4
    Tom Scott
    SmarterEveryDay
    Colin Furze
    Objectivity
    The Royal Institution
    Joe Scott


    Matematika
    Numberphile


    Fyzika
    Physics Girl
    Steve Mould
    Sixty Symbols


    Chemie
    Periodic Videos
    NileRed


    Astronomie
    Astrum
    PBS Space Time


    Příroda
    Nature Bites


    Lingvistika
    NativLang
    Langfocus


    Teorie hudby
    Adam Neely


    Historie
    Fall of Civilizations
    Mark Felton Productions
    Dejepis Inak
    History Time


    Potraviny
    Adam Ragusea
    Tasting history with Max Miller


    Film
    Film Courage


    Lingvistika/Mytologie/Etnologie/Kulturní antropologie
    Crecganford
    The Histocrat


    Jídlo/Debunking
    How To Cook That


    Nevím, neznám, nezařaditelné nebo zatím nezařazeno
    Branch Education
    ColdFusion
    Today I Found Out
    CGP Grey
    rozbalit záhlaví
    RAGNAROK
    RAGNAROK --- ---
    CLUSMAN:
    Lidi maj radi stastne konce.
    CLUSMAN
    CLUSMAN --- ---
    Ze 13.4.1946 skupina byvalych zidovskych partyzanu uskutecnila plan na posmteni se prislusnikum SS, kteri byly tou dobou zavreni v byvalem koncetraku Stalag III a cekajicich na soud. Plan byl zlikvidovat jedem 3000 zajatcu. Zidovsti partyzani se nechali zamestnat v tabore jako pekari a kuchari a v dany den rano natreli 3000 krajicu chleba smesi arzenem a lepidlem. Otravilo se 2000 prislusniku SS z toho stovky tezce. Nikdo nezemrel.
    Failed Jewish Holocaust survivor plot to kill Nazis still a mystery after 70 years | Second world war | The Guardian
    https://www.theguardian.com/world/2016/aug/31/jewish-holocaust-survivor-kill-nazis-poison-arsenic-nuremburg

    Jakto, ze o tom neni film?
    XBAHNO
    XBAHNO --- ---
    ATUARFIK: Eště chvíli a počišíš!
    ATUARFIK
    ATUARFIK --- ---
    Zdá se ovšem, že se nám tady dochoval starogermánský affix -ja-, "povjašit" podle vzoru "sitjan" (posadit), "warmjan" (ohřát) nebo "ligjan" (položit). Až to zjistí proto-fanatici, odhodí učebnice litevštiny a pomažou na Plzeňsko.
    NELLAS
    NELLAS --- ---
    XCHAOS: To by se četlo povešet.
    ATUARFIK
    ATUARFIK --- ---
    Co se to tady kuje za háčko-umlautovské pikle kvůli několika Plzeňákům? :)

    https://cs.wikipedia.org/wiki/Plze%C5%88sk%C3%A9_n%C3%A1%C5%99e%C4%8D%C3%AD ("povjášet" je v té tabulce na konci)
    XCHAOS
    XCHAOS --- ---
    TAPINA: možná by to vyřešila slovenská přehláska - a umlaut?
    WOODMAKER
    WOODMAKER --- ---
    TAPINA: tak to ale chceme, aby tam byl zaroven hacek a carka.
    TAPINA
    TAPINA --- ---
    WOODMAKER: Povjáší se prádlo. Činnost, která není jednorázová, ale zabere nějakou dobu, takže dokonavý tvar nevystihuje správně podstatu :D
    WOODMAKER
    WOODMAKER --- ---
    TAPINA: jako pravidelne povesit?
    TAPINA
    TAPINA --- ---
    XCHAOS: Mně už od dětství chybí a s háčkem, protože povjášet se přece nemůže psát takhle!
    XCHAOS
    XCHAOS --- ---
    87HIGHFLYER: nosočistoplenou, ne? Jehličňany do toho netahej...

    Já myslím, že čeština zbytečně stagnuje. Potřebujeme třeba x̌, už proto, že se dá snadno psát na mobilu ;-) chce to, aby se toho ujal nějaký zdatný vlivník...
    RSZ
    RSZ --- ---
    TAPINA: btw élektron (ἤλεκτρον) je jak jantar, tak slitina zlato-stříbro.. což mi nepřijde úplně praktické, když máš třeba élektrono-élektronový šperk
    TAPINA
    TAPINA --- ---
    Přitom kdyby obrozenci ctili zdroj, tak je to jantarosíla.
    NELLAS
    NELLAS --- ---
    ABAP: Elekřtina opravdu zní možná ještě o stupínek hůř :))
    PISKVOR
    PISKVOR --- ---
    ABAP: Nějakou dobu se i používalo mlno/mluno, taky pominulo.
    ABAP
    ABAP --- ---
    NELLAS: elekřtina měla být původně česky flumo. Škoda že se to neujalo. O dost lépe se vyslovuje.
    HOWKING
    HOWKING --- ---
    GUMBA: Au, to bolí!
    GUMBA
    GUMBA --- ---
    COMMANDER: To je imho docela dobrá představa takto velkého čísla. Ostatně čísla do cca 10100 jsou zhruba tak limit, co si "lze představit", ve smyslu že to lze vztáhnout k počtu něčeho fyzicky relevantního (např. ten počet zrnek písku, počet částic ve vesmíru apod).

    Někdy je však potřeba jít dál, dovolte mi tedy odložit si zde pár mírně zajímavých faktů :)

    Např. kdyby to obrovské množství 1041 zrnek písku mohlo mezi sebou vzájemně interagovat každé s každým. Obvykle (ve fyzice) je ta interakce omezená vzdáleností, nicméně i bez toho omezení by pro 1041 zrnek bylo těch interakcí "jen" řádově 1082, sice o hodně víc, ale vlastně ne dramaticky, např. stále to lze zapsat stejnou notací s mocninou desítky.

    Na některé matematické problémy už tento popis velmi rychle přestane stačit - teorie grafů a související oblasti občas potřebují opravdu velká čísla. Lze se k nim dobrat, pokud v předchozí úvaze se zrnky písku začneme ty "interakce" mezi zrnky třeba obarvovat, prostě jim dáme nějaké další parametry a budeme na ně klást nějaké další podmínky. Pak ty počty porostou podstatně rychleji a začnou být potřeba opravdu velká čísla, tak velká, že si to už prostě lidsky představit nelze.

    K největším a zároveň nejznámějším asi patří tzv. Grahamovo číslo, které ve své době vyjadřovalo určitý horní limit (označme ho g64) pro počet dimenzí nadkrychle v jistém matematickém problému(nadkrychle ve 2D je čtverec, ve 3D krychle, ve 4D a víc prostě n-dimenzionální nadkrychle; má 2n vrcholů, kde n je počet dimenzí). Jde o to, že hrany nadkrychle obarvujete dvěma barvami a ptáte se, zda v té spleti barevných čar bude vždy (!! tj. pro každé obarvení dané nadkrychle) existovat alespoň jedna skupinka 4 vrcholů, která leží v jedné rovině a zároveň všechny spojnice těch 4 vrcholů mají stejnou barvu. Graham s kolegou přišli na to, že řešení existuje, ta dimenze n musí být větší než 6 (dnes zpřesněno na větší než 12) a zároveň menší než velmi velmi velké číslo g64 (dnes zpřesněno na podstatně menší číslo, nicméně také stále nepředstavitelně obrovské). Ještě než se dobereme k tomu, jak nechutně velké g64 vlastně je, tak malá poznámka. Celé to zní na první pohled jako jasná a naprostá píčovina. To určitě zní. K čemu ale takové a podobné věci můžou být dobré? No tahle třída problémů, kdy něco řešení má a pak ho mít přestane, nebo naopak, nebo má, nemá, pak zase má atd atd, je vlastně velmi zajímavá. Třeba souvisí s NP úplnými problémy současné computer science a matematiky (a to se úzce týká hlubokých neuronových sítí, tedy AI a spol). Je-li nějaký problém tzv. NP úplný, znamená to, že ho neumíme obecně vyřešit v polynomiálním čase. Důležité je tam ale to slovo obecně. Protože některé speciální případy toho problému jsou naopak velmi snadné. Čili se ukazuje, že řešitelnost toho problému má tři hlavní oblasti: jednoduše řešitelná (triviální na první pohled), řešitelná složitěji (nějakým komplikovaným algoritmem), a neřešitelná (=řešitelná v exponenciálním čase). A ty hranice jsou dost ostré a lze matematicky dokázat, že tam jsou, na čem závisí atd ... a to i trochu připomíná tu Grahamovu šílenost.

    Kolik je tedy g64? Je na to potřeba speciální notace, např. Knuthova (ano, ten Donald Knuth co vymyslel TeX a napsal bibli TAOCP). Typicky se v Knuthově a podobných notacích vezmou běžné matematické operace sčítání, násobení a mocnění a zobecní se na hyperoperace. Jako je násobení opakované sčítání stejného čísla, tak je mocnění opakované násobení stejného čísla, takže další v posloupnosti bude opakované mocnění stejného čísla (tj. 2+2+2+2, 2.2.2.2, 2^2^2^2 ... mocnění toho exponentu a exponentu jeho exponentu atd.). Tomu opakovanému (iterovanému) mocnění se říká tetrace. Iterováním tetrace vznikne pentace ... a tak dále. V Knuthově zápisu se normální mocnění zapíše pomocí šipky, např. 2↑4 je 2^4, tetrace je 2↑↑4 = 2↑(2↑(2↑2) = 2^2^2^2 = 2^16 = 65536, pentace je 2↑↑↑4 = 2↑↑(2↑↑(2↑↑2), což už je 2^2^2^65536. To opravdu rychle roste, že?
    A nyní ta Grahamova čísla:
    g1=3↑↑↑↑3, zkráceně zapsáno jako 3↑43, jde tedy o šestou hyperoperaci, sextaci. Tedy rovnou první číslo je nepředstavitelně velké a ani ho nelze napsat v rozumném tvaru 10^něco.
    g2=3↑g13 ... tedy ne sextace ale g1-ace. Hyperoperace řádu toho obřího čísla g1
    potom g3=3↑g23
    ... a tak dále až do g64. ... vzít vesmír, do každého bodu Planckovy délky dát další vesmír a u všech těch vesmírů dát do každého bodu zase další vesmíry a takhle to opakovat v krocích, jejichž počet je roven počtu těch Planckových bodů ve vesmíru .. a stejně všech těch vesmírů bude méně než g64 :)

    Je asi jasné, že všechna čísla gn jsou mocniny, malou zajímavostí budiž, že g64 končí na sedmičku :)
    87HIGHFLYER
    87HIGHFLYER --- ---
    ATUARFIK: idealni, tam se chci po novym roce podivat :D
    ATUARFIK
    ATUARFIK --- ---
    87HIGHFLYER: Zvací dopis přechodníkům!
    Kliknutím sem můžete změnit nastavení reklam